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Abstract – Dispersive liquid-liquid microextraction (DLLME) is an extraction procedure 

gaining popularity in the recent years due to the easiness of operation, high enrichment 

factors, low cost and low consumption of organic solvents. This extraction method, prior 

to gas chromatography with mass spectrometry detection (GC-MS), was optimized for 

the analysis of polybrominated diphenyl ethers (PBDEs) in aqueous samples. These were 

extracted with chlorobenzene (extraction solvent) and acetonitrile (dispersive solvent), 

allowing an enrichment factor of about 470 for BDE-100. The calibration curve for 

BDE-100 was linear in the range of 0.005-10 μg/L, with an average reproducibility of 

12% (RSD %). The LOD, calculated by the signal-to-noise ratio, was 0.5 ng/L for 

BDE-100 and the recovery ranged from 91-107% for all spiked samples. Relative 

expanded uncertainty was concentration-dependent, reaching high values near the limit 

of quantification and decreasing until 14% for concentrations higher than 1 µg/L of 

BDE-100. The dispersive liquid-liquid microextraction combined with gas 

chromatography with mass spectrometry detection (DLLME-GC-MS) method could be 

successfully applied to the determination of other PBDEs in water samples. 

 

Keywords: dispersive liquid-liquid microextraction, gas chromatography with mass 

spectrometer detection, polybrominated diphenyl ethers, uncertainty  
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PBDEs are widely used in commercial products such as furniture, textiles, plastics, paints 

and electronic equipments to reduce ignition and burning, acting as additive flame 

retardants due to their low cost and high-performance. The family of PBDEs consists of 

209 congeners (C12H10-xBrxO where x = 1, 2, …, 10). The main commercial mixtures, 

penta-, octa- and deca-BDE, contain a limited number of congeners, respectively 

BDE-99/47/100/153/154, BDE-183/197/196/207 and BDE-209/206, in order of 

decreasing percentage [1]. These commercial mixtures differ in the content of specific 

PBDEs congeners, which in turn differ in their bioavailability, bioaccumulation and 

toxicological properties. As they are not chemically bound, these chemicals can leach out 

of the products/materials in which they are applied. As a result of their potential to 

accumulate in the environment, the EU has agreed to ban the marketing and use of penta- 

and octa-BDE from 1 July 2004. Only deca-BDE is allowed, and therefore EU and USA 

industries have ceased the penta- and octa-BDE manufacturing. There is however no 

maximum admissible level for these compounds in water set by the European 

Community. 

 

Analytical methods for PBDEs in waters are complex and laborious, due to the necessity 

of using a pre-concentration step. This pre-concentration step is always needed in order to 

reach detection limits (LODs) low enough to determine the ultra-trace levels at which 

PBDEs are present in water (normally within the ng/L or low g/L range) [2-4]. The 

analytical methods found in the literature for PBDEs quantification in water matrices are 

compiled in Table 1 [5-18]. Concerning the chromatographic techniques, gas 

chromatography with electron-capture detection (ECD) [7] or mass spectrometry (MS) 

detection [9, 10, 14-18] are the most widely used for the determination of PBDEs in water 
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samples, but high-performance liquid chromatography with diode array (HPLC-DAD), 

ultraviolet (UV) or MS detectors may be also applied [5, 6, 8, 11-13]. Methods that use 

liquid chromatography generally lead to higher LODs (10-700 ng/L). The 

LLE-HPLC-MS-MS method conducts to lower LODs but the equipment is rather 

expensive, a high sample volume is required (1 L) and significant amounts of organic 

solvents (not environmentally friendly) are typically used, which restrains this method for 

monitoring applications. 

  

Solid phase extraction plus DLLME is another method used for the extraction of PBDEs 

from water and plant samples [7] presenting low LOD but with the disadvantages of 

requiring high sample volume and laborious experimental procedure. On the other hand, 

the ECD detector used does not allow the identification of the compounds, which may 

represent a problem if any undesired interference co-elutes with target analytes.  

A great variety of recent extraction techniques was applied prior to GC-MS: 

ultrasound-assisted emulsification-microextraction (USAEME) [9], cloud point 

extraction (CPE) with ultrasound assisted back extraction (UABE) [10], hollow-fiber 

liquid phase microextraction (HF-LPME) [14], hollow-fiber microporous membrane 

liquid-liquid extraction (HF-MMLLE) [15], microwave assisted extraction (MAE) [16], 

stir bar sorptive extraction (SBSE) [17] and headspace solid phase microextraction 

(HS-SPME) [18]. Almost all of these methods use low sample volume. This is also 

particularly important if the analytical method is designed to be applied, for instance, in 

degradation or sorption experiments, where small amounts of samples are taken along the 

time. 

 



5 

 

Although advantages are recognized to each of the described methods, some drawbacks 

are also pointed out. For instance, some methods are rather laborious, which increases the 

time of analysis [10, 17], while other present lower precision [14, 15], as reported 

elsewhere [9, 19], or require higher sample volumes (up to 1.5 L) [16]. Finally, carry-over 

phenomena have also been pointed as a disadvantage for SBSE and HS-SPME [17, 18].  

Therefore, the search for a simple and inexpensive method, applicable either to 

environmental monitoring or degradation/sorption studies of PBDEs in aqueous samples 

(which require small volumes of sample and quick response) justifies the choice of 

DLLME. 

 

DLLME technique has gained a great popularity due to the easiness of operation, rapidity, 

low time and cost, high recovery and enrichment factor [11]. The application of this 

promising technique for PBDEs determination in water samples is still very limited. Up 

to the author’s knowledge, only three analytical methodologies, based exclusively on 

DLLME as extraction technique, were found in the literature for such purpose [5, 11, 12]. 

All of them use detectors (HPLC-DAD and HPLC-UV) that do not allow an unequivocal 

compound confirmation. Furthermore, the LODs obtained by these methods (12-400 

ng/L) are in general not compatible with the requirements for monitoring purposes. The 

most recent DLLME method uses ionic liquids as extraction solvent (TA-IL-DLLME), 

but the use of such ionic liquids, with too high viscosity, represents an important trouble 

for the direct injection in the liquid chromatograph. 

 

Therefore, the proposed analytical methodology intends to overcome some drawbacks of 

the determination of PBDEs at ng/L level by using DLLME as a quick and easy 
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extraction step, that requires low sample volume, hyphenated to mass spectrometry 

detection. On the other hand, this study presents for the first time a complete set of 

validation parameters, including the calculation of the expanded uncertainty associated to 

the results in the range of quantification.  

 

EXPERIMENTAL 

 

Reagents. 2,4,4’-tribromodiphenyl ether (BDE-28), 2,2´,4,4’-tetrabromodiphenyl ether 

(BDE-47), 2,2’,3,4’,4-pentabromodiphenyl ether (BDE-85), 

2,2’,4,4’,5-pentabromodiphenyl ether (BDE-99), 2,2’,4,4’,6-pentabromodiphenyl ether 

(BDE-100), 2,2’,4,4’,5,5’-hexabromodiphenyl ether (BDE-153), 

2,2’,4,4’,5,6’-hexabromodiphenyl ether (BDE-154), 

2,2’,3,4,4’,5’,6-heptabromodiphenyl ether (BDE-183) as 50 mg/L solutions in isooctane 

were obtained from Sigma-Aldrich (St. Louis, MO, USA). Distilled water was used for 

standards preparation. Acetonitrile (ACN), acetone (AC) and methanol (MeOH) of 

LC-MS grade were obtained from VWR (Porto, Portugal). Chlorobenzene (CB) of 

analytical grade and dichloromethane (DCM) for pesticide residue analysis were 

purchased from VWR (Porto, Portugal). Carbon tetrachloride (CTC) and chloroform 

(CF) were p.a. from Merck. 1,1,2,2-Tetrachloroethane (TCE) was reagent grade from 

Aldrich.  

 

Standard solutions and samples. Stock solutions were prepared by evaporating an 

appropriate amount of each analytical standard under a gentle nitrogen flow. Then, the 

residue was redissolved in ACN. Aqueous standard solutions were prepared daily by 
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evaporating an appropriate amount of stock solution under nitrogen flow and 

resuspending the residue in 25 mL of water. The homogenization of standards was 

promoted by vortex. A calibration curve with 12 BDE-100 standards extracted by 

DLLME, as described below, was obtained from 0.005 to 10 μg/L. 

Three different types of water samples were used: a natural river water (collected from 

Sousa River, Portugal), tap water (from our laboratory located at the Northern region of 

Portugal, a relatively hard water, pH 6.90, TOC 2.3 mg/L) and a mineral water 

(commercial water with pH 6.39, TOC 1.1 mg/L). All types of water were filtered (VWR 

quantitative filter papers with particle retention between 5-10 m – West Chester, USA) 

and stored in amber glass bottles, at -20 ºC, protected from light until they were 

processed. Preliminary tests did not reveal any retention in the filters used. 

 

Instrumentation. PBDEs were determined by a Varian 4000 GC-MS Chromatograph. 

The mass spectrometer was operated in the electronic impact ionization (EI) mode. The 

temperatures for the injector, trap, transfer line and manifold were held respectively at 

290, 200, 250 and 50 ºC. A DB-5MS column was used (30 m × 0.25 mm ID × 0.25 µm 

film thickness; Walnut Creek, CA, USA) and the oven temperature was programmed as 

follows: initial stage at 60 ºC for 2 min, heating 30 ºC/min to 250 ºC, then 5 ºC/min until 

300 ºC and held for 8 min. The injected volume was 1 L and a 701N Hamilton syringe 

was used. Carrier gas was Helium (99.9999 %) at 1 mL/min flow rate. Monitoring ions in 

the selected ion-monitoring mode (SIM) are listed in Table 2. The identification of the 

compounds was done by comparison of the retention times with those obtained for 
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directly injected standard solutions. All PBDEs were injected separately under the 

optimized conditions described below.  

 

DLLME procedure. Extractions were performed in 50 mL plastic screw-cap test tubes 

with conical bottom. An aqueous sample (25 mL) was extracted with given volumes of 

different dispersive and extraction solvents; optimized conditions were 1 mL of ACN and 

80 l of CB. The mixture was centrifuged for 5 min at 4000 rpm in a Hettich Rotofix 32A 

Centrifuge. The sedimented phase was collected with a syringe and injected in the 

GC-MS.  

 

Validation parameters. Precision was evaluated by extracting 3 independent standards 

at 3 concentration levels: 0.01, 1 and 10 μg/L, and 3 independent spiked samples (tap, 

drinking and river water) at three concentration levels: 0.01, 1 and 10 μg/L. Accuracy 

(extended trueness) was evaluated by standard addition method using tap, drinking and 

river waters spiked with BDE-100 at the same three concentration levels.  

 

RESULTS AND DISCUSSION 

 

This work comprised a previous optimization of the extraction method by DLLME, 

followed by the validation of the analytical methodology, with special care to the 

estimation of the expanded uncertainty associated to the results. 

 

Optimization of DLLME. The effect of some critical parameters on the DLLME 

performance was investigated, among them the nature and volume of extraction and 



9 

 

dispersive solvents, extraction time and salt addition. For such purpose, BDE-100 was 

selected as a model compound to evaluate in which manner the extraction process was 

affected by such parameters. So, all results obtained in this section were carried out with 

aqueous solutions containing 1 g/L of BDE-100. The final conditions were afterwards 

applied to the other PBDEs. To better understand the effects of the above-mentioned 

parameters on the DLLME performance, enrichment factors (EF) and extraction 

recoveries (%ER) were determined:  

 

0/ CCEF sed
 (1) 

 

100)/()(% 0  aqsedsed VCVCER
 (2) 

 

where C0 and Vaq are the BDE concentration and volume of aqueous solution samples and 

Csed and Vsed the BDE concentration and volume of the sedimented phase.  

All experiments were performed in triplicate and the samples were injected in the 

GC–MS at least twice. 

 

Effect of extraction and dispersive solvents The kind of extraction and dispersive solvent 

is crucial in the extraction efficiency by DLLME [19]. The extraction solvent must 

display high extraction capability for the analytes, higher density than water, good 

chromatographic behavior and low water solubility [11, 12, 19]. Typically, halogenated 

hydrocarbons are used due to their high density [19, 20]. On the other hand, the selection 

of the dispersive solvent should take into account its miscibility both in water and in the 
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extraction solvent. The commonly used dispersive solvents include MeOH, ethanol, 

ACN, AC and tetrahydrofuran [19]. Usually, the selection of extraction and dispersive 

solvents is made separately but the result may be compromised. In this study, this 

selection was made jointly to determine which set of solvents leads to a higher extraction 

efficiency. Therefore, the combined effect of four extraction solvents (CTC, CB, DCM 

and CF) and three dispersive solvents (AC, MeOH and ACN) on DLLME performance 

was studied. TCE was also tested as extraction solvent with ACN but this set of solvents 

proved to be aggressive for some components of the equipment used, such as the GC 

injection syringe, and therefore was discarded.  

The experiments were performed using 1 mL of dispersive solvent containing 100 L of 

extraction solvent (Table 3). The analytical responses obtained for the extracted samples 

were compared to those obtained for standards prepared in the same solvent. DCM and 

CF were automatically discarded because the formation of two phases was not observed 

under the conditions employed and using the mentioned dispersive solvents. Although 

similar extraction recoveries were attained for both extraction solvents (CTC and CB), 

CB was chosen because it gave higher analytical response. This last point is very 

important specifically in the quantification of trace compounds like PBDEs. On the other 

hand, CTC leads to higher variation coefficients and has a lower boiling point, which 

could represent a relevant source of error.  

Yanyan Li et al. [11] used TCE and ACN as extraction and dispersive solvents, 

respectively. This set of solvents led to higher extraction efficiencies (extraction recovery 

of around 103%), but injections were made manually in the HPLC due to the aggressive 

character of the solvent mixture, which may contribute to the decrease of precision. The 
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same problem arose when this organic solvent was applied jointly with tetrahydrofuran 

(dispersive solvent) for BDE-209 determination in water [12].  

Concerning the dispersive solvent, although CB showed good results when combined 

with AC, higher reproducibility was obtained with ACN, probably due to less leaks of 

solvent by evaporation and therefore ACN was the selected as dispersive solvent. 

 

Effect of the extraction solvent volume To examine the effect of the CB volume on the 

extraction process performance, BDE-100-containing aqueous samples were submitted 

to the same DLLME procedure by using 1 mL of ACN containing different volumes of 

CB (80, 100, 150 and 200 L). Chlorobenzene volumes below 80 L were not considered 

because a minimum safety volume of 40 L was set for the sedimented phase. Fig. 1a 

depicts the extraction recovery and the enrichment factor versus CB volume. As shown in 

Fig. 1a, the enrichment factor decreases and the recovery remains constant as the CB 

volume increases. Indeed, it was noticed that an increase in the volume of the extraction 

solvent did not allow the transfer of a higher mass of analyte to the sedimented phase and, 

for that reason, the concentration in such a phase decreased. Since the concentration in the 

sedimented phase decreased in the same proportion as the increase of the extraction 

solvent volume, the extraction recovery remains constant and the enrichment factor 

decreases, as indicated in Fig. 1a. The same behavior was observed by other authors who 

implemented DLLME technique to determine a huge number of target compounds in 

different matrices [11, 12, 19, 21]. Therefore, 80 L of CB was selected as the optimum 

volume. 
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Effect of dispersive solvent volume The dispersive solvent is directly responsible for the 

formation of the cloudy solution and, by this way, its volume may compromise the degree 

of dispersion of the extraction solvent in the aqueous phase [19]. To evaluate the effect of 

dispersive solvent volume, the experimental tested conditions included the use of 0.5, 1.0, 

1.5 and 2.0 mL of ACN, containing 80 L of CB. Although the extraction solvent volume 

added was 80 L, due to the miscibility of this solvent with the dispersive solvent and 

water phase some losses occurred and the volume of the sedimented phase was smaller 

than 80 L. For that reason, a concentration factor of approximately 470 was obtained 

(Fig. 1b). This observation is in line with many papers [22]. The results in Fig. 1b also 

show that neither the extraction recovery, nor the enrichment factor was significantly 

affected by the volume of ACN. Other authors found an optimum value of dispersive 

solvent volume, but with different sample volumes used (5 mL instead 25 mL) for the 

same dispersive solvent volumes tested here [5, 11, 12, 21]. So, 1 mL of ACN was chosen 

for the subsequent experiments because it leads to more precise results (lower coefficient 

of variation). 

 

Effect of extraction time In DLLME, the extraction time is defined as the interval between 

the injection of the extraction and dispersive solvents mixture and the centrifugation step. 

One remarkable advantage of this extraction technique is the short time needed to transfer 

the analyte from the aqueous phase to the organic one and thus, to reach the equilibrium 

stage [19]. It is important to study the effect of this parameter because the extraction time 

can influence significantly the extraction efficiency [23]. The extraction recoveries 

obtained from aqueous solutions submitted to the same DLLME procedure and different 
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extraction times (0, 10, 15 and 30 min) are shown in Fig. 1c. As observed, the extraction 

time has no impact on the extraction efficiency within the interval of times selected. 

Longer times were not considered, because the aim is to obtain a rapid extraction with 

acceptable efficiency; the most time-consuming step is the centrifuging, which lasts 

about 5 min. This is an important aspect since it marks the great advantage of this 

extraction technique against the others presented in the introduction section. Similar 

results were also achieved by other researchers [11, 12, 21], meaning that the mass 

transfer is very fast, occurring during the injection of the solvents/start-up of the 

centrifuge. 

 

Effect of salt addition The increase of the aqueous sample ionic strength by salt addition 

may cause opposite consequences on the recovery. Firstly, an increase of the ionic 

strength can lead to a decrease of analyte and extraction solvent solubilities in the 

aqueous phase, which may contribute positively to the extraction process recovery [19]. 

However, the volume of sedimented phase increases by increasing ionic strength and 

thus, the analyte concentration decreases [19]. The ionic strength was evaluated adding 

0–5% (w/v) sodium chloride to the aqueous solution. Under such conditions, no 

significant salt addition effect on the DLLME performance was observed (Fig. 1d). 

Similar results were obtained by other authors [7, 24, 25]. Consequently, the following 

experiments were performed without the addition of salt. 

 

Quantitative analysis. Quantitative analysis of contaminants as BDE-100, or ultra-trace 

contaminants in water samples, is usually necessary for different objectives. The most 

important is to allow the monitoring of waters in different environmental media (rivers, 
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lakes, drinking and tap water, etc.) and for that, the main purpose of the validation is to 

obtain the lowest quantification limit possible. However, other objectives include the 

quantification of the contaminants for sorption and degradation studies, or other, where 

normally higher concentrations are used. In this case, it is acceptable to reach somewhat 

higher quantification limits, but the limiting factor is the available sample volume, 

because most of the time batch experiments are carried out and samples have to be taken 

along the process time. Therefore, analytical methods have to be able to quantify the 

contaminants at low levels, using low sample volumes. In these cases, the estimation of 

the uncertainty of the results plays an important role, because models will be constructed. 

The combination of low quantification limits with low sample volume will have an 

impact on the uncertainty of the results. 

The validation of the analytical method, including the uncertainty measurement, followed 

the bottom-up approach described in EURACHEM CITAC Guide [26] and by other 

authors [27-29]. It comprised a first step of in-house validation, where the main 

parameters were obtained – linearity of the response (using standards extracted in the 

same mode as samples), limit of detection, limit of quantification (LOQ), precision and 

accuracy. The second step was the estimation of the expanded uncertainty associated to 

the results. 

 

Response linearity and detection and quantification limits Calibration was performed for 

BDE-100 by DLLME-GC-MS using 12 standards extracted in the same conditions as the 

samples (from 0.005 to 10 g/L). The correlation coefficient (0.9997) and the linearity 

tests revealed a good performance for the linearity.  The LOD and LOQ were calculated 

based on a signal-to-noise-ratio of 3 and 10, and they were found to be 0.5 and 2 ng/L, 
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respectively. Compared with other techniques reported in the Introduction, the obtained 

LOD is lower or, at least, of the same order of magnitude. 

 

Precision and Accuracy The precision was evaluated by repeatability and intermediate 

precision at three BDE-100 concentration levels – 0.01, 1 and 10 g/L. Repeatability 

corresponds to the relative standard deviation (RSD%) observed when one sample is 

injected six times in the same day under the same conditions. Repeatability expressed as 

RSD% was 7, 5 and 3% for 0.01, 1 and 10 g/L. Intermediate precision was analyzed 

extracting three independent standards (ultrapure water) and spiked samples (drinking, 

tap and river water) at three concentration levels (Table 4). Average precision, expressed 

as RSD, was 12% for standards and 13%, 12% and 10% for spiked drinking, tap and river 

waters, respectively. 

Accuracy (extended trueness) was evaluated by the percentage of recovery for spiked 

samples (drinking, tap and river water) because nor the reference materials, neither 

interlaboratory or proficiency studies, were available. Recoveries were on average higher 

than 91% and lower than 107% for all spiked sample considered (Table 4). The good 

recovery results and the low RSDs observed enable an accurate evaluation of BDE-100 in 

the tested samples, even at the lowest level assessed.  

The analytical response for standards prepared in ultrapure water was compared to the 

response obtained for spiked drinking, tap and river waters at the same concentration 

levels. It was observed that the analytical response is almost independent of the type of 

water used, meaning that there is no matrix effect. 
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Estimation of the expanded uncertainty associated to the results According to the 

bottom-up approach described in the EURACHEM CITAC Guide, four individual 

sources of uncertainty ( 1U , 2U , 3U  and 4U ) were taken into account to estimate the 

combined standard uncertainty ( cu ) [26]: 

 

2222 4321 UUUUuc   (3) 

 

The individual sources of uncertainty are the following: 

1U  – The uncertainty associated with the preparation of the standards (it was estimated 

using the error propagation law for the different dilution steps from the stock standard 

solution): 

 

 

(4) 

 

where mi  is the error associated with the measurement of a certain parameter and mi  

is the measured value. 

 

2U  – The uncertainty associated with the calibration curve which was obtained from 12 

BDE-100 standards extracted by DLLME as samples (it was calculated for the different 

concentration levels of the standards): 
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0sx  is the standard deviation of the concentration 0x , a  is the slope of the calibration 

curve, m is the number of replicates performed, n  is the number of standards of the 

calibration curve, iŷ  are the y  values calculated by the calibration curve from x  

values, 0y  is the average of the iŷ  values,
_

y  is the average of the iy  values 

(experimental values), ix  is the concentration of standards used in the calibration curve 

and 
_

x  is the average of the ix  values.  

 

3U  – The uncertainty associated with the precision of the extraction and also of the 

chromatographic method: 

ny

s
U

med

3

 
(7) 

 

where s  is the standard deviation of precision assays, medy  is the average of the y  

values obtained for each concentration and n  is the number of assays. 

 

4U  – The uncertainty associated with the accuracy (it was calculated as the average 

percentage of recovery obtained within all the experiments): 
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where )(s  is the RSD of the average percent recovery and n  is the number of assays. 

 

To provide an interval within which the value of the measurand is believed to lie with a 

higher level of confidence, an expanded uncertainty (U ) should be used [26]. So, the 

expanded uncertainty (U ) was obtained for an approximate level of confidence of 95% 

by a coverage factor of 2 [26]. Fig. 2a shows the contribution of each uncertainty source 

for the combined standard uncertainty ( cu ). As can be seen, the uncertainty associated 

with the calibration curve ( 2U ) is the most significant contribution at lower 

concentrations, showing the importance of this estimation. For higher concentrations, the 

uncertainty associated with the precision ( 3U ) and accuracy ( 4U ) exhibit more 

importance for the combined standard uncertainty ( cu ). From Fig. 2b, it can be observed 

that the relative expanded uncertainty decreases from 22 to 14% for BDE-100 

concentrations varying from 0.5 to 10 µg/L, which is acceptable and normally obtained 

with other methods. However, when BDE-100 concentrations approach the 

quantification and detection limits of the analytical method, the relative expanded 

uncertainty increases exponentially and represents more than 100% of the stated value. 

For that reason, Fig. 2b only represents the expanded uncertainty for BDE-100 

concentrations higher than 0.1 g/L. This behavior was already observed in other studies 

[29]. 
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Suitability of the extraction methodology to other PBDEs. The applicability of the 

developed analytical methodology (DLLME-GC-MS) for other PBDEs quantification in 

water matrices was also evaluated. The PBDEs selected are the environmentally 

dominant congeners [30]. Firstly, the extraction recovery was determined for each PBDE 

at two concentration levels – 1 and 10 g/L (Table 5). For that, aqueous solutions 

prepared from a mixture of all PBDEs were submitted to DLLME under the conditions 

optimized in the section 3.1. Fig. 3 shows an example of a chromatogram obtained, where 

good separation of the compounds and high resolution can be observed. Despite the 

extraction optimization was performed only for BDE-100, high extraction recoveries 

were attained for the other PBDEs (Table 5). On the other hand, it can be seen that the 

extraction efficiency of BDE-100 is not affected by the presence of the other congeners. 

These results prove that such extraction methodology can be successfully applied for the 

other PBDEs and it seems that the extraction efficiency of individual PBDEs is similar 

both when they are alone or together in the sample. In terms of quantitative analysis, the 

precision was evaluated by extracting three independent standard solutions at the same 

two concentration levels (1 and 10 g/L). The results expressed as RSD% are compiled in 

Table 5. Again, it can be advanced that the method remains precise, even when it was 

applied to a mixture of PBDEs. Estimated LOQs were calculated based on a 

signal-to-noise ratio of 10 and by injecting three independent standards of each PBDE 

congener and evaluating the analytical response. As observed from Table 5, the method 

proposed here, beyond being successfully applied to all PBDEs considered, allows 

reaching lower or comparable quantification limits than those existing in the literature 

(with more complex or time consuming extraction techniques). 
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CONCLUSIONS 

A method by DLLME-GC-MS has been described for the determination of PBDEs in 

water samples. Additionally, the expanded uncertainty of the results was assessed for the 

first time, which is especially important for low concentration levels, where most 

uncertainty sources are extremely significant. The LOQ for BDE-100 was 2 ng/L and 

acceptable precision (12% for standards and 13%, 12% and 10% for spiked drinking, tap 

and river waters, respectively) and accuracy (91-107% recovery for all spiked samples) 

were obtained. The relative expanded uncertainty decreased from 22% to 14% when 

concentration of BDE-100 was increased up to 0.5 µg/L. Similar extraction recoveries 

were achieved when the developed method was applied to other PBDEs. The precision 

remains satisfactory (average 11%) even when mix standards with all PBDEs were 

analyzed. Lower or comparable LOQs to those reported in literature were obtained with 

this cheap, fast and easy to implement method for PBDEs quantification in water (2-113 

ng/L). 
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Table 1. Literature survey on PBDEs quantification in water samples 

Analytes Extraction Determination Analytical parameters Uncertainty Year Ref. 

BDEs  

47,99,154,183 

TA-IL-DLLME 

Sample volume – 5 mL; dispersive solvent – MeOH 

(1 mL); extraction solvent – [C8MIM] [PF6] (40 L) 

HPLC–DAD LR – 500-500,000 ng/L 

RSD – 1.0-3.8% 

LOD – 100-400 ng/L 

Recovery – 81.0-127.1%  

NO 2012 

 

[5] 

BDEs  

28,47,99,154,183,209 

 

 

 

SFOME 

Sample volume – 40 mL; extraction solvent – 

2-dodecanol (25 L); temperature – 60 ºC; stirring 

speed – 900 rpm; extraction time – 25 min; salt 

addition – no 

HPLC–DAD 

 

 

 

LR – 5000-500,000 ng/L 

(BDE-209) 

500-75,000 ng/L (others) 

LOD – 10-40 ng/L 

Recovery – 92-118% 

NO 

 

 

2012 [6] 

 

 

 

BDEs  

28,47,85,99,100,153,154 

SPE 

Column – Supelclean LC-C18; conditioning – 

DCM (2 mL), MeOH (5 mL), H2O (5 mL); load – 

100 mL at 10 mL/min; elution – n-hexane (2 mL) 

+ 

DLLME 

Sample volume – 5 mL; disperser solvent – ACN (1 

mL); extraction solvent – 1,1,2,2-tetrachloroethane 

(22 L); salt addition – no 

GC–ECD LR – 0.1-100 ng/L (BDEs 

28, 47) 

0.5-500 ng/L (others) 

RSD – 4.2-7.9% 

LOD – 0.030-0.15ng/L 

Recovery – 66.8-94.1% 

NO 2009 [7] 

BDEs  

47,99,100,153,154 

LLE 

Sample volume – 1 L; extraction solvent – n-hexane 

(100 mL); salt addition – 20 g 

LC/NI–APP1/M

S/MS 

LR – 0.025-10 ng/L 

LOD – 0.004-0.1 ng/L 

Recovery – 43-99% 

NO 2009 [8] 

BDEs  

47,99,100,153 

USAEME 

Sample volume – 10 mL; temperature –  35 ºC; 

extraction solvent – CF (100 L); extraction time –  

5 min 

GC–MS LR – 5-5000 ng/L (BDEs 

47,100) 

5-10 000 ng/L (BDEs 

99,153) 

RSD – <10.3% 

LOD – 1-2 ng/L 

Recovery – ≥96% 

NO 2009 [9] 
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BDEs  

47,99,100,153 

CPE 

Sample volume – 10 mL; non-ionic surfactant – 

Triton X-100 (0.4 g/L); salt addition – 400 L of 

6.15 mol/L; temperature – 80 ºC; equilibrium time – 

7 min 

+ 

UABE 

Extraction solvent – isooctane (50 L); extraction 

time – 5 min 

GC–MS LR – 4-150 ng/L  

RSD – ≤8.5% 

LOD – 1-2 ng/L 

Recovery – 96-106% 

NO 2009 [10] 

BDEs  

28,47,99,209 

DLLME 

Sample volume – 5 mL; disperser solvent – ACN (1 

mL); extraction solvent – tetrachloroethane (20 

L); salt addition – no 

HPLC–DAD LR – 50-50,000 ng/L (BDEs 

28, 99); 100-100,000 ng/L 

(others) 

RSD – 3.8-6.3% 

LOD – 12.4-55.6ng/L 

Recovery – 87.0-114.3% 

NO 2008 [11] 

BDE-209 DLLME 

Sample volume – 5 mL; disperser solvent – THF (1 

mL); extraction solvent – tetrachloroethane (22 

L); salt addition – no 

HPLC–UV LR – 1000-500,000 ng/L  

RSD – 2.1% 

LOD – 200 ng/L 

Recovery – 89.9-95.8% 

NO 2008 [12] 

BDE-209 SDME 

Sample volume – 5 mL; extraction solvent – 

toluene; solvent drop volume – 3 L; extraction 

time – 15 min; stirring speed – 600 rpm; salt 

addition – no  

HPLC–DAD  LR – 1,000-1,000,000 ng/L  

RSD – 4.8% 

LOD – 700 ng/L 

Recovery – 91.5-102.8% 

NO 2007 [13] 

BDEs  

28,47,99,100 

HF-LPME 

Sample volume – 3 mL; temperature – 40 ºC; 

extraction solvent – decane; stirring speed – 1000 

rpm; extraction time – 20 min; salt addition – no 

GC–ICP–MS LR – 200-20,000 ng/L  

RSD – 5.1-9.1% 

LOD – 15.2-40.5 ng/L 

Recovery – 85-110% 

NO 2007 [14] 

BDEs  

28,47,99,100,153,154,183 

HF-MMLLE 

Sample volume – 100 mL; extraction solvent – 

n-undecane; stirring speed – 1200 rpm; extraction 

time – 60 min; salt addition – no 

GC–MS LR – 1-100 ng/L  

RSD – 16.9% 

LOD – 1.1 ng/L 

Recovery – 85-110% 

NO 2006 [15] 
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BDEs 

28,47,66,85,99,100,138,153,154 

MAE 

Sample volume – 1.5 L; extraction solvent – 

hexane-acetone, 1:1 (v/v) (60 mL); temperature – 

85 ºC; extraction time – 1 min; two cycles 

GC–MS–MS LR –500-100,000 ng/L  

LOD –0.02-0.1 

ng/membrane 

Recovery – 72-91% 

NO 2006 [16] 

BDEs 

28,47,66,85,99,100,138,153,154 

SBSE 

Sample volume – 100 mL; PDMS commercial stir 

bars; temperature – ambient; extraction time – 25 h; 

MeOH addition – 20%  

TD–GC–MS LR – 20-600 ng/L  

RSD – ≤20% 

LOD – 0.3-9.6 ng/L 

Recovery – 94-106% 

NO 2006 [17] 

BDEs  

3,47,85,99,100,153,154 

HS-SPME 

Sample volume – 10 mL; fiber – PDMS; extraction 

temperature – 100 ºC; extraction time – 30 min; 

desorption temperature – 280 ºC; desorption time – 

2 min; salt addition – no  

GC–MS–MS LR – 0.12-503 ng/L  

RSD – 1.2-26% 

LOD – 0.0075-0.190 ng/L 

Recovery – 74-117% 

NO 2004 [18] 

AC – acetone, ACN – acetonitrile, CB – chlorobenzene; CF – chloroform; CPE – cloud point extraction; CTC – carbon tetrachloride; DCM – dichloromethane; DLLME – 

dispersive liquid-liquid microextraction; EF – enrichment factor; ER – extraction recovery; GC-ECD – gas chromatography with electron capture detector; GC-ICP-MS – gas 

chromatography-inductively coupled plasma mass spectrometry; GC-MS – gas chromatography mass spectrometry; GC-MS-MS – gas chromatography tandem mass 

spectrometry; HF-LPME – hollow-fiber liquid phase microextraction; HF-MMLE – hollow-fiber microporous membrane liquid-liquid extraction; HPLC-DAD – 

high-performance liquid chromatography with diode array detector; HPLC-UV – high-performance liquid chromatography with ultraviolet detector; HS-SPME – headspace 

solid phase microextraction; LC/NI-APPI/MS/MS – liquid chromatography-negative ion atmospheric pressure photoionization tandem mass spectrometry; LLE – liquid-liquid 

extraction; LOD – detection limit; LOQ – limit of quantification; LR – linearity range; MAE – microwave assisted extraction; MeOH – methanol; PBDEs – polybrominated 

diphenyl ethers; RSD – relative standard deviation; SBSE – stir bar sorptive extraction; SDME – single-drop microextraction; SFOME – solidified floating organic drop 

microextraction; SPE – solid phase extraction; TA-IL-DLLME – temperature-assisted ionic liquid dispersive liquid-liquid microextraction; TCE – 1,1,2,2-tetrachloroetahne; 

TD-GC-MS – thermal desorption gas chromatography mass spectrometry; TOC – total organic carbon; UABE – ultrasound-assisted back extraction; USAEME – 

ultrasound-assisted emulsification-microextraction  

 



26 

 

26 

Table 2. Retention time, quantification and qualifier ions for each PBDE by GC–MS 

PBDE Class 

Retention time, 

min 

Quantification ion 

(m/z) 

Qualifier ion 

(m/z) 

BDE-28 Tri-BDE 10.720 248 + 408 246 

BDE-47 Tetra-BDE 12.513 326 + 486 328 

BDE-85 Penta-BDE 15.954 406 + 564 404 

BDE-99 Penta-BDE 14.829 406 + 566 404 

BDE-100 Penta-BDE 14.227 406 + 566 564 

BDE-153 Hexa-BDE 17.459 484 + 644 486 

BDE-154 Hexa-BDE 16.480 484 644 

BDE-183 Hepta-BDE 20.473 564 + 724 562 

 

Table 3. Analytical responses and extraction recoveries (ER) obtained with different 

extraction and dispersive solvents 

Parameter 

CB CTC 

ACN MeOH AC ACN MeOH AC 

Area ×104, kCounts 25±2 27±1 22±1 15±1 18±2 17±2 

%ER 75±3 71±4 73±2 63±5 77±6 70±8 
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Table 4. Precision and recovery obtained for BDE-100 standards and spiked water 

samples 

Sample 

Precision, RSD% (n=3) 

 

Recovery, % (n=3) 

0.01 g/L 1 g/L 10g/L 

 

0.01 g/L 1 g/L 10 g/L 

Standard 18 10 8 

 

----- ----- ----- 

Spiked drinking water 20 6 13 

 

96±19 107±6 88±12 

Spiked tap water 19 6 11 

 

114±22 103±6 105±11 

Spiked river water 11 14 4 

 

82±9 110±16 82±3 

 

Table 5. Extraction recovery (ER), precision and estimated LOQ for all PBDEs by 

DLLME-GC-MS 

PBDE 

%ER (n=3) 

 

Precision, RSD% (n=3) 

 Estimated LOQ, ng/L 

1 g/L 10 g/L 

 

1 g/L 10 g/L 

 

BDE-28 71±6 69±7 

 

11 12 

 

10±1 

BDE-47 70±6 69±6 

 

12 13 

 

30±5 

BDE-85 72±9 78±6 

 

12 12 

 

93±23 

BDE-99 72±7 77±5 

 

12 9 

 

27±2 

BDE-100 76±7 73±5 

 

12 10 

 

2.2±0.3 

BDE-153 66±6 73±5 

 

13 11 

 

73±5 

BDE-154 69±8 68±4 

 

14 11 

 

23±4 

BDE-183 63±7 70±5 

 

8 9 

 

113±27 
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Figure Captions 

Fig. 1. Effect of chlorobenzene volume (a), acetonitrile volume (b), extraction time (c) 

and salt addition (d) on the enrichment factor and extraction recovery for BDE-100. 

Fig. 2. Contribution of each source of uncertainty to the combined standard uncertainty: 

U1 – standards preparation, U2 – calibration curve, U3 – precision and U4 – accuracy (a) 

and expanded uncertainty (b) for BDE-100 determination in water by DLLME–GC–MS.  

Fig. 3. Chromatogram of a standard solution of PBDEs at individual concentration of 1 

g/L. 
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Fig. 1. Santos M.S.F. et al. 
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Fig. 3. Santos M.S.F. et al. 

 


