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Methodology

The performance of the usual methods to identify outliers is highly dependent of multi-
variate normality of the bulk of the data, or on the data being elliptically contoured. To
reduce this dependency, a method to detect outliers in multivariate data based on clus-
tering and robust estimators was introduced in Santos-Pereira and Pires (2002). The
basic ideas of the method can be described in the steps bellow. Consider a multivariate
data set with n observations in p variables.

1. Segment the n points cloud (of perhaps complicated shape) in k smaller subclouds
using a partitioning clustering method with the hope that each subcloud (cluster)
looks “more normal” than the original cloud.

2. Then apply a simultaneous multivariate outlier detection rule to each cluster by
computing Mahalanobis-type distances from all the observations to all the clusters.
An observation is considered an outlier if it is an outlier for every cluster. All
the observations in a cluster may also be considered outliers if the relative size of
that cluster is small (our proposal is less than 2p + 2, since for smaller number of
observations the covariance matrix estimates are very unreliable).

3. Remove the observations detected in 2 and repeat 1 and 2 until no more observations
are detected.

4. The final decision on whether all the observations belonging to a given cluster (not
previously removed, that is with size greater than 2p + 1) are outliers is based on a
table of between clusters Mahalanobis-type distances.

In order to evaluate the performance of the method, we conducted a simulation study
with several distributional situations, three clustering methods (k-means, pam and
mclust) and three pairs of location-scatter estimators (classical and two robust). Af-
ter this simulation study we concluded that for normal data all the methods behave
well, except for the masking with the classical Mahalanobis distance (which is not
surprising). For non-normal data the best performance is usually achieved by mclust,
without large differences between the classical and the robust estimators of location
and scatter. Generally we have concluded that the exploratory method proposed for
outlier detection works well both under elliptical and non-elliptical data configurations.

AIC based criterion

One of the difficulties encountered in the implementation of the method, was the choice
of the number of clusters, k, as well as the clustering method and the location-scatter
estimators. In Santos-Pereira and Pires (2002) it is suggested to apply several values of
k (e.g. from 1 to a maximum possible k which depends on the number of observations
and on the number of variables) and decide after a careful analysis of the results. A less
subjective way for choosing k (and also the clustering method and the location-scale
estimators) is to minimize an adapted AIC (see Sakamoto et al. (1988)):
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where

fN(x; µ̂, Σ̂) is the density of Np(µ̂, Σ̂).

An adapted AIC, with M-estimators, was also introduced by Ronchetti (1997). In this
communication we discuss the robustness of this AIC based criterion for choosing the
number of clusters k, by using some distributional situations described in Santos-Pereira
and Pires (2002), with and without outliers.

Simulation study

In order to evaluate the robustness of this AIC based criterion for choosing the number
of clusters k, we conducted a simulation study with:

•Three clustering methods k-means, pam (partitioning around medoids, from Kaufman
and Rousseeuw, 1990) and mclust (model based clustering for gaussian distributions,
from Banfield and Raftery, 1992), each of them with k = 2, 3, 4, 5, 6. The case k=1, for
which the clustering method is irrelevant was also considered.

•Three pairs of location-scatter estimators: classical (x̄,S) with asymptotic detection
limits; RMCD25 (Rousseeuw, 1985) and OGK(2)(0.9) (Maronna and Zamar, 2002)
with detection limits determined previously by simulation with 10000 normal data
sets.

•Four distributional situations:

1. Non-normal (p = 2) without outliers, 50 observations from N2(µ1,Σ1), 50 obser-
vations from N2(µ2,Σ2) and 50 observations from N2(0,Σ1), with µ1 = (0, 12)T ,
Σ1 =diag(1,0.3), µ2 = (1.5, 6)T and Σ2= diag(0.2,9).

2. Non-normal (p = 2) with outliers, 150 observations as in the previous case plus 10
outlying observations from N2((−2, 6)T , 0.01I).

3. Non-normal (p = 2) without outliers, 75 observations from N2(0,Σ3) and 75 obser-
vations from N2(0,Σ4), with Σ3 = diag(1,81) and Σ4= diag(81,1).

4. Non-normal (p = 2) with outliers, 150 observations as in the previous case plus 20
outlying observations from N2(10, 0.1I).

In each combination we recorded, for each clustering × estimator combination, the cho-
sen k, and also the overall minimizing combination (clustering × estimator × k). Tables
1 to 4 give, for the 4 distributional situations respectively, the proportion of simulations
for which each k was chosen (within each clustering × estimator combination).
The overall minimizing combination was always the mclust × classical.
For the mclust cases, the value of k chosen more often is the expected according to the
distributional situation (Figures 1 and 2). Note that k must be increased by 1 when
the outliers are introduced and this is captured by the AIC criterion.
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Figure 1: Distributional situations 1 and 2 with detection contours.
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Figure 2: Distributional situations 3 and 4 with detection contours.

Proportion of simulations for which each k was chosen within each clustering ×

estimator combination:

Table 1: k MCD Classical OGK
k-means 1 0.00 0.00 0.00

2 0.01 0.00 0.02
3 0.28 0.01 0.32
4 0.26 0.28 0.14
5 0.15 0.26 0.19
6 0.30 0.45 0.33

pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.29 0.02 0.27
4 0.20 0.23 0.19
5 0.14 0.23 0.11
6 0.37 0.52 0.43

mclust 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.61 0.48 0.66
4 0.30 0.28 0.24
5 0.06 0.15 0.08
6 0.03 0.09 0.02

Table 2: k MCD Classical OGK
k-means 1 0.00 0.00 0.00

2 0.00 0.00 0.00
3 0.03 0.00 0.00
4 0.17 0.18 0.12
5 0.31 0.31 0.33
6 0.49 0.51 0.55

pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 0.27 0.03 0.31
5 0.43 0.44 0.30
6 0.30 0.53 0.39

mclust 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.13 0.07 0.14
4 0.46 0.40 0.56
5 0.27 0.21 0.14
6 0.14 0.32 0.16

Table 3: k MCD Classical OGK
k-means 1 0.00 0.00 0.00

2 0.00 0.00 0.00
3 0.04 0.00 0.01
4 0.16 0.09 0.10
5 0.41 0.47 0.38
6 0.39 0.44 0.51

pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.14 0.02 0.03
4 0.13 0.04 0.02
5 0.30 0.36 0.47
6 0.43 0.58 0.48

mclust 1 0.00 0.00 0.00
2 0.68 0.46 0.56
3 0.12 0.12 0.18
4 0.06 0.16 0.12
5 0.09 0.11 0.07
6 0.05 0.15 0.07

Table 4: k MCD Classical OGK
k-means 1 0.00 0.00 0.00

2 0.01 0.00 0.03
3 0.07 0.00 0.02
4 0.05 0.03 0.04
5 0.19 0.25 0.25
6 0.68 0.72 0.66

pam 1 0.00 0.00 0.00
2 0.00 0.00 0.00
3 0.02 0.00 0.01
4 0.02 0.00 0.00
5 0.16 0.05 0.07
6 0.80 0.95 0.92

mclust 1 0.00 0.00 0.00
2 0.02 0.02 0.01
3 0.68 0.47 0.60
4 0.17 0.21 0.21
5 0.08 0.15 0.12
6 0.05 0.15 0.06

Conclusions

•The method described for outlier detection works well both under elliptical and non-
elliptical data configurations.

•The adapted AIC is a useful tool for selecting k and the clustering method. Due to
the cleaning step of the original method, the proposed AIC is robust (the outliers are
either deleted or isolated in their own clusters).

•However, one shall not forget that outlier detection in multivariate data is a very
difficult task and will always remain an open problem.

References

BANFIELD, J. and RAFTERY, A. (1992): Model-based Gaussian and non-Gaussian
clustering. Biometrics, 49, 803-822.

KAUFMAN, L. and ROUSSEEUW, P. (1990). Finding Groups in Data: An Introduc-
tion to Cluster Analysis. New York: Wiley.

MARONNA, R. and ZAMAR, R. (2002). Robust estimates of location and dispersion
for high dimensional data sets. Technometrics, 44, 307-317.

RONCHETTI, E. (1997): Robustness aspects of model choice. Statistica Sinica 7,

327-338.

ROUSSEEUW, P. (1985). Multivariate estimation with high breakdown point. In: W.
Grossman, G. Pflug, I. Vincze and W. Werz: Mathematical Statistics and Applica-

tions, Vol B. Dordrecht, Reidel, 283-297.

SAKAMOTO, Y. and ISHIGURO, M. and KITAGAWA, G. (1988): Akaike Informa-

tion Criterion Statistics. Kluwer Academic Publishers: New York

SANTOS-PEREIRA, C.M. and PIRES, A. M. (2002): Detection of outliers in multi-
variate data: a method based on clustering and robust estimators. In: W. Härdle
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