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Abstract. A process of Knowledge Discovery in Databases (KDD) in-
volving large amounts of data requires a considerable amount of compu-
tational power. The process may be done on a dedicated and expensive
machinery or, for some tasks, one can use distributed computing tech-
niques on a network of affordable machines. In either approach it is usual
the user to specify the workflow of the sub-tasks composing the whole
KDD process before execution starts.

In this paper we propose a technique that we call Distributed Generative
Data Mining. The generative feature of the technique is due to its capa-
bility of generating new sub-tasks of the Data Mining analysis process
at execution time. The workflow of sub-tasks of the DM is, therefore,
dynamic.

To deploy the proposed technique we extended the Distributed Data
Mining system HARVARD and adapted an Inductive Logic Program-
ming system (IndLog) used in a Relational Data Ming task.

As a proof-of-concept, the extended system was used to analyse an arti-
ficial dataset of a credit scoring problem with eighty million records.

keywords: Data Mining, Parallel and Distributed Computing, Inductive Logic
Programming.

1 Introduction

As a result of more complex and efficient data acquisition tools and processes
there is, in almost all, organisations huge amounts of data stored. Large amounts
of money are invested in designing efficient data warehouses to store the collected
data. This is happening not only in Science but mainly in industry. Analysis of
such amounts of data has to be done using (semi-)automatic data analysis tolls.
Existing OLAP techniques are adequate for relatively simple analysis but com-
pletely inadequate for in-depth analysis of data. The discipline of Knowledge
Discovery is Databases (KDD) is a valuable set of techniques to extract valuable
information from large amounts of data (data ware houses). However, KDD ([1])
is facing nowadays two major problems. The amounts of data are so large that
it is impractical (or too costly to download the data into a single machine to
analyse it. Also, due to the amounts of data or to its distributed nature in large
corporations, it is the case that the data is spread across several physically sepa-
rated data bases. These two problems prompted for a new area of research called



Distributed and Parallel Data Mining[2]. This new area addresses the problem
of analysing distributed databases and/or making the analysis in a distributed
computing setting.

There are parallel versions of Decision Trees algorithms [3], parallel Asso-
ciation Rules Algorithms [4] and parallel Inductive Logic Programming (ILP)
algorithms ([5],[6]) that may be used in the (Relational) Data Mining step of
KDD. To handle the large amounts of data these algorithms these use a data
partition approach and distribute the analysis work over a cluster of machines.
One weakness of these systems is that if one of the machines fails the whole pro-
cess has to be restarted, which is a serious drawback for long task’s execution
time. The implementation of such parallel DM algorithms are not designed with
fault-tolerant features.

In this paper we propose a solution to make parallel DM algorithms such
as Decision Trees, Association Rules or Inductive Logic Programming to be
fault-tolerant and able to run on conventional PCs without disturbing the nor-
mal workings of an organisation. For that purpose we have extended the HAR-
VARD [7] system to accommodate such desirable features for the parallel DM
algorithms. The HARVARD system (HARVesting Architecture of idle machines
foR Data mining) has been developed as a computational distributed system
capable of extracting knowledge from (very) large amounts of data using tech-
niques of Data Mining (DM) namely Machine Learning (ML) algorithms. We
take advantage of its following features. In a Condor [20] fashion, the system
only assigns tasks to idle resources in the organisation. The system may access
data distributed among several physically separated databases. The system is
independent of the data analysis (ML) tool. It has very good facilities to recover
from both slave and master nodes failure.

To integrate a parallel algorithm such as parallel Decision Trees, parallel As-
sociation Rules or parallel ILP we included in the HARVARD system the pos-
sibility of creating new tasks at run time at the HARVARD’s task description
level. This is the new generative feature of the distributed computing charac-
teristic of HARVARD. The parallel DM algorithm on the other hand has to be
adapted to be able to suggest new tasks in the HARVARD task description lan-
guage. We present in this paper an example for the Inductive Logic Programming
IndLog [9].

With this proposal we may include fault-tolerant features in some of the most
popular distributed DM algorithms.

The rest of the paper is organised as follows. In the Section 2 we present
the HARVARD system. In Section 3 we present basic notions of Inductive Logic
Programming enough for the reader to understand the coupling of the analysis
tool with the HARVARD system. We explain the generative technique for Data
Mining in Section 4. The deployment of the HARVARD system extension is
described in Section 5. Section 6 compares other projects with features close to
HARVARD capabilities. We conclude in Section 7.



2 The HARVARD system

The Architecture

The KDD process is composed of a set of tasks that are executed according to
a workflow plan. Both the tasks description and the workflow plan are provided
by the user in two files. One file contains the tasks description and the second
one contains the workflow. The workflow is specified using a control description
language. Each task specification is made using XML. The information concern-
ing each individual task include the name and location of the tool used in the
task, the location of the data being processed in the task and the computational
resources required (platform type, memory and disc requirements).

The distributed architecture of the HARVARD system is composed of a Mas-
ter node and a set of computing nodes called Client (or Slave) nodes. The Mas-
ter node is responsible for the control and scheduling the sub-tasks of the whole
KDD process. Each Slave node executes application (sub-)tasks assigned by the
Master node. Each node is composed by four modules that execute specific tasks
to make the overall system working.

In what follows we refer to Figure 77 for the modular structure of both the
Master and the Slave nodes. We now describe in detail the each node type.
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Fig. 1. The Harvard basic system architecture.

The Master node The Master node is responsible for reading the KDD pro-
cess specification and executing it. Each task is of the KDD process is handle
by the system as a Working Unit (WU). Each WU will be assigned to a one



or more machines. The assignment of a WU to more than one machine makes
the the system more tolerant to faults. It occurs when there are idle machines
available and the task is expected to have long running times. There are other
fault tolerant features that we will refer bellow. When a WU finishes the results
is associated with that WU and the status of the workflow graph updated. When
the graph is completely traversed, meaning that the KDD process has finished,
the result is returned to the user.

The Master node is composed by four modules: the Task manager; the Sched-
uler; the Resource Manager and; the Communications module.

The Task Manager Module The basic function of the Task Manager (TM)
module is to store and maintain and provide information concerning the tasks
of the KDD process. The TM module constructs a graph structure representing
the workflow of tasks.

It first reads and stores the specifications of all tasks composing the KDD
process and then reads the workflow plan of the tasks and constructs a workflow
graph structure. This module updates the status of the tasks in the graph and
associates the results of each one when finished. At the end informs the user of
the results of the KDD process. It may also be used to monitor the whole KDD
process providing the user with information about the task finished, running and
waiting computational resources to run.

The TM interacts with the Scheduler module. Looking at the workflow graph
this module informs the Scheduler of ready to process tasks, provides a complete
specification of each task and receives information concerning the terminations
and results of each task.

The Resources Manager Module The Resources Manager (RM) mod-
ule stores and periodically updates information concerning the computational
resources usable by the HARVARD system. When the system starts this module
loads from a database the static information concerning all the computational
resources usable by the system. That information is dynamically updated dur-
ing the system execution. The information of each resource includes the type of
platform and CPU, the amount of memory and disc space and a time-table with
the periods the machine may be used. The workload of each machine is com-
municated periodically to this module to update so the system has a updated
view of the resources. The RM module has a method (a match maker) to com-
pute the “best” computational resource for a given request from the Scheduler.
Each computation resources has a time-table of availability of the resource and
the policy of use. This information state when the machine is available and in
what conditions. The usage conditions may indicate that the system may use
the machine only when there are no users logged in or by specifying a workload
threshold that must be respected at all times.



The Task Manager module receives, from the Scheduler, requests for available
machines satisfying a set of resources requirements and returns a best match at
the moment. This module alerts the Scheduler that a task must be reassigned
in two situations: if a machine is severely delayed to notify the TM module of
its workload and; if the pre-established period of use of the machine is expired®.
The TM module receives periodically the workload of all running machines.

The Communications Module The Communications (COM) module is
the only channel to access the world outside a node. All messages or requests
concerning components or resources outside the node are processed by the COM
module. This module exists in both Master and Slave nodes. To accomplish that
task it implements several communication protocols that includes: RMI, socket,
HTTP and JDBC. All these allows a client to download the task required soft-
ware (HTTP), download the data (JDBC), send messages to the Master (sockets
or RMI) and allows the Master to send messages to the Slaves (socket or RMI).
It also allows the Master to keep a DB backup of its status and activities (JDBC)
to allow a full recover in case of fault.

This Master COM module interacts via RMI or sockets with the COM mod-
ule of the Slave to send messages. In a Master node the messages to be sent are
received from the Scheduler module or the Resources Manager module. The for-
mer sends messages concerning task assignments and control directives whereas
the later sends tasks status updated to be stored in a DB (fault tolerant pur-
poses). The COM module receives and redirects the workload messages for the
RM module. Received messages concerning tasks results are redirected to the
Scheduler module.

The Scheduler Module The Scheduler module controls the execution of
the tasks composing the KDD process, launching, rescheduling or stopping the
Work Units. The scheduler may also decide to assign a WU? to more than
one Slave node. The scheduler inspects the workflow graph where the tasks
interconnections and status are represented to decide what tasks to activate and
when.

The Scheduler asks the Resource Manager module for the best match machine
satisfying a given Work Unit requirements. With the results of such request the
Scheduler assigns that WU to the given Slave and notifies the Slave via the
Communications module. Whenever there is a change in the status of a WU
the Scheduler is informed by the Task Manager of that event and triggers the
(re)scheduling a new task.

! In this case the task running on the machine is terminated.
2 The ones considered more critical for some reason like training longer execution
times.



A Slave node A Slave node does the actual data analysis work by running the
Data Ming tool. In order to have a distributed system that is independent of the
Data Mining tool the DM tool is involved in a wrapper that directly controls
the DM tool. Each Slave also reports periodically its workload to the Resource
Manager module of the Master. It is through the Slave’s Communications module
that the Slave downloads the DM tool and the data to be processed, and stores
the results of the local analysis.

Each Slave has four modules: the Workload Monitoring (WM); the Worker
(SW); the Application Wrapper (AW) and; the Communications (COM) module.

The Worker module The WU message is interpreted in this module. A WU
usually results in several steps to be performed. A typical WU for analysing
data involves the downloading of the analysis tool, the download of the data,
the processing and the return of the results. The Worker module controls all
these steps by asking the Communications module to access the software and
data and triggering the Application Wrapper module to execute the analysis.
Finally it sends (via Communications module) the results to the Master.

The Worker nodes interacts with the Communication modules by sending it
request to download the software and data and to return the final result. It also
asks the Application Wrapper to start the analysis task and collects the results
from it.

The Application Wrapper module The AW module completely controls the
DM tool. It supplies the DM tool input stream and collects whatever appears
at the DM output stream. Through the input stream the module provides the
commands for the DM tool. The commands are provided in a file specified in the
Working Unit specification. The output stream is stored in a file as the results
file. The results file is uploaded to a database entry as specified in the WU
specification. For the time being all the analysis of the results files are done in
other follow up WU where special scripts written by the user do the necessary
analysis. This permits the system to be independent of the DM tool.

The Workload Monitoring module This module monitors periodically the
workload of the machine it is running and reports that information to the Re-
sources Manager module of the Master. It also detects in a user has login into
the machine. In that later case the Master is informed that the task running will
be terminated. The Slaves enters a idle state where it just waits for the machine
to be idle again.

Communications Module The slave Communicating module is the only chan-
nel to the outside world. It has capabilities to download software using HTTP
or ftp protocol, it may download data from a DB using JDBC and it can send
and receive messages to and from the Master using RMI or sockets.

The Communications module interacts with all modules of the Slave node
delivering and receiving messages.



Sub-tasks workflow description language

The HARVARD system accepts as input a file describing the workflow of the
sub-tasks composing the KDD process. The workflow is a graph with two kinds
of nodes: sequential nodes and; parallel nodes. Each node stores a set of tasks to
be executed or edges to other nodes. In a sequential node the set has an order
and that order represents the sequential execution of the sub-tasks that must be
respected. In a parallel node the tasks in the set may start all at the same time.
In a parallel node there may be a barrier specifying the tasks that must termi-
nate before the “execution” of the node is considered terminated. The graph has
a root node where the tasks of the KDD process start executing.

Some of the steps in a KDD process are done quite frequent and most often
are the same for a vast number of domains. For example feature subset selection
or the DM tool parameter tuning are quite frequent pre-processing tasks in the
KDD process. For these frequent tasks the task description language provides a
set of macros for these complex operations. For example: to do a top-down feature
selection up to two attributes or tune the “p” parameter using the values pl,
p2 and p3. The system will then “unfold” those macros into the corresponding
graph structure.

3 ILP in a tiny nutshell

Inductive Logic Programming (ILP)[10,11] is a discipline in the intersection of
Machine Learning and Logic Programming. ILP studies techniques to (auto-
matically) induce models for data. In ILP both the given data and the induced
models are represented using First Order Logic. The data provided to an ILP
system are of two kinds: i) examples and; ii) background knowledge. Examples
are instances of the concept whose definition the system will induce. The back-
ground knowledge is any information the user thinks is relevant to construct the
model. In the most popular ILP systems the induction process is mapped into a
search on the space of all possible hypotheses (the hypothesis space). The system
then uses any if well-know search algorithms to search the hypothesis space and
return the best hypothesis according some specified criterion.

Some advantages of using ILP in DM tasks are the following. It has a very
powerful description language to encode the constructed models. The user may
give the system easily any information he considers relevant to produce the
model. The background knowledge may include not only relation’s definitions
but also numerical computations like regression models, geometric or statistical
models etc. that are nicely combined in the final model. Most often ILP induced
models are comprehensible to the user.

A major shortcoming of ILP systems is its efficiency. One possible approach
the overcome ILP’s lack of efficiency is through the use of parallelism.

As described in [6] there are several approaches to parallelise an ILP system.
One of the most simple but providing good results (see [5] for a comparison of



several methods) consists in establishing a partition of the data and apply an ILP
system to each subset of the data. The models induced by each ILP system on
each subset are sent to a master node that combines the models. If the assembled
model “explains” all the examples then the process stops and the model is the
final model. Otherwise there are a next round of the same procedure where the
examples not “explained” are subject a learning process equal to the first step.
We have implemented in IndLog this approach to parallel ILP. It is a similar
approach to the one described in [2] where classifiers are constructed for each set
of the data partition and then sent to a central node where they are combined.
In the ILP case this process is repeated until all examples are “explained”.

4 Distributed Generative Data Mining

The main cycle of a DM algorithm, such as Decision Trees, Association Rules
or ILP is run a number of times that depend, among other things, on the input
data. The number of nodes in a Decision Tree is not fixed before the algorithm
hat constructs the tree is run. The number of clauses in that and ILP algorithm
induces is also not fixed before the algorithm processes the data. When devel-
oping parallel versions of these algorithm the number of tasks on each run will
depend on the dataset being processed. On the other hand in a KDD process
the number of tasks and their workflow is established by the user, using a tool
like YALE[12] for example, and stays unchanged during the execution of the
KDD process. To be able to integrate a parallel version of a DM algorithm in
a automatic KDD setting one as to allow the tool to have a dynamic workflow
of the tasks. For example new tasks are generated whenever a parallel Decision
Tree constructed splits a new node. To accommodate such situation we extended
the HARVARD system to be able to dynamically accept new tasks during run
time. New tasks are encoded as new nodes in the graph that represents the task’s
workflow.

In the data parallel version of IndLog a master node decides the split of
the examples and assigns each slave node a subset. Instead of assigning directly
the “sub-tasks” to the slaves via MPI interface, the IndLog translates the sub-
tasks requests to a format that the Master node (Task Manager module) of the
HARVARD understands. The HARVARD scheduler then assigns each task to
existing idle machines. If there are too many idle machines then the same task
my be run (redundantly) in more than one machine. In case of failure of one of
the machine the analysis completes without delay.

The main advantages of the generative technique proposed in this paper is to
increase the fault-tolerance of the analysis tool and to take full advantages of the
HARVARD system. Using the HARVARD system the analysis does not disturb
the normal workings of the organisation, does not require dedicated machines
and has tolerance to failure of both the Master node and any of the Slave nodes.



5 Deployment of the HARVARD system

Just to test the feasibility of our approach and not to compare the systems perfor-
mance on a specific problem we produced a large artificial data set with realistic
information. The data set is on the domain of credit scoring. We characterised
each instance with 55 attributes that correspond to the 55 fields of an actual form
used by a real bank. The information used to generate the records was based on
census information publicly available at the Brazilian national statistics office.
We used a bank expert to provide the rules that assign the class value to the
generated registers. The data set has 80 million registers. The data was stored
in three MySQL databases in different machines. We used a laboratory with 15
PCs where Master students have classes and use for developing their practical
works. The machines have dual boot so sometimes they start with Linux and
sometimes with Windows. It takes several hours to analyse the data set on the
reported computational environment using the HARVARD system with IndLog.

To analyse the data using IndLog [13,9] we had to provide scripts for the Ap-
plication Wrapper of the Client node (see Figure 1) to control the IndLog system.
The IndLog system was run in a data parallel fashion allowing a maximum of
50000 examples at each node.

To evaluate the fault-tolerant features we deliberately generated failures in
some machines during the analysis process and under two circumstances. First
we disconnect a machine running a task that was also assigned to other machine
and notice no increase in the analysis time. Secondly we disconnected a machine
were a task was running that was not assigned to any other machine. With
a small overhead that task was reassigned to another machine an the analysis
continued then normally.

6 Related work

Our system is designed to take advantage of idle computers in an organisation
and adequate for problems that may be decomposed into coarse grain sub-tasks.
We present some related projects that can reach this objective but of differenti-
ated form our architecture.

The Globus Alliance [14] is an international collaboration that does research
in grid computing that seeks to enable ”the construction of computational grids
providing pervasive, dependable, and consistent access to high-performance com-
putational resources, despite geographical distribution of both resources and
users”. One of the results of this research is " The Globus Toolkit” that is a ”bag
of services”like: resource allocation manager that provides creation, monitoring
and management services; security infrastructure; monitoring and discovery ser-
vices. For each of their services there is a programming interface in programming
language C.These core services are used by other organisations and Globus to
make high level components and systems [15,14,16].



The Boinc (Berkeley Open Infrastructure for Network Computing)? is a plat-
form that makes it easy for scientists to create and operate public-resource com-
puting projects. Workstations connected to the Internet by phone or DSL line
can be participate some project and share its own power computer to solve scien-
tific problem when device is idle. The process is very sample, people interested to
participate just installing a software client that connect a project master server.
So, when workstation is idle some tasks may be executing. Some projects like
SETI@home, Folding@home using the Boinc platform [17].

The Knowledge Grid is a specialised architecture in data mining tools that
uses basic global services from Globus architecture [18]. The architecture design
for Knowledge Grid following some principles: data heterogeneity and large data
sets handling; algorithm integration and independence; compatibility with grid
infrastructure and grid awareness; openness, scalability, security and data pri-
vacy [19].

Condor operates in workstation environment. The system aims to maximise
the utilisation of workstation with as little interference as possible between the
jobs is schedules and the activities of the people who own workstations. ” Condor
is specialised job and resource management system for compute intensive jobs.
Like other full-featured systems, Condor provides a job management mechanism,
scheduling policy, priority scheme, resource monitoring and resource manage-
ment. Users submit theirs jobs to Condor when and where to run the based
upon policy, monitors their progress, and ultimately informs the user upon
completion”[20]. Condor allows almost any application that can run without
user interaction to be managed. This is different from systems like Set@home
and Protein Folding@home. These programs are custom written. Source code
does not have to be modified in anyway to take advantage of these benefits.
Code that can be re-linked with the Condor libraries gain two further abilities:
the jobs can produce check-points and they can perform remote system calls [20].

Like the project Boinc, our architecture intends to use of idle workstations
and also the system considers the heterogeneous environment with different op-
erational systems (Linux, Windows, OS-X) but instead of it has a light client
installed in each workstation it uses the Java Virtual Machine. A new approach
will be present that to use old applications for data mining without re-build or
re-compile with a new libraries like Condor or another approaches.

Besides, our proposal implements two-level language. A specific semantics
for the administration of the data mining process, and other for specification of
tasks of distributed processing. While a language is destined to the user for the
definition of the process of the knowledge discovery, the other language is used
by the system to manage the distributed processing.

3 University of California - Berkeley- http://boinc.berkeley.edu/



7 Conclusions

We have made a proposal to run parallel Data Mining Algorithms, such as
parallel decision Trees, parallel Association Rules and parallel Inductive Logic
Programming systems in a fault-tolerant setting. To achieve the desired fault-
tolerant features we have extended the HARVARD system and have adapted the
IndLog ILP system. The HARVARD system was extended with the possibility
of including at run-time new tasks to schedule. In the ILP system a new module
was encoded to communicate with the HARVARD Master node to suggest new
tasks in the format of the task description language the the HARVARD system
recognises.

The extended HARVARD system and the Inductive Logic Programming sys-
tem IndLog were used to analyse an eighty million credit scoring dataset. The
fault-tolerant features proved useful when simulating several failures on the ma-
chines during the analysis process.
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