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Abstract – In this paper we describe an algorithm that 
produces a post mission estimate of the spatial evolution of 
the Isurus AUV. To make this post processing possible, the 
navigation system records on the vehicle logging system all 
the navigation data received during the mission execution. 
The data comprise the depth of the vehicle, the outputs of the 
tilt sensors and digital compass, the angular velocity of the 
propeller, as well as acoustic range measurements to a set of 
transponders. After mission completion, the logged data is 
then processed to produce the estimate of the evolution of the 
vehicle. The algorithm used to process this data is based on a 
fixed interval nonlinear stochastic smoothing scheme and 
produces an estimate that evolves continuously in time. For 
each instant of time, the post mission position estimate is 
based on all the information collected during the mission, as 
opposed to real time estimates that can only take into account 
past data. 

I. INTRODUCTION 

Isurus is an AUV operated and partially developed at the 
Underwater Systems and Technology Laboratory (LSTS) 
from Porto University. This vehicle has been performing 
several missions for the last few years in different operational 
scenarios, mainly collecting CTD and bathymetric data. After 
the execution of each mission, the collected data is processed 
according to the final purpose of the mission. In almost all 
the cases, it is necessary to locate the collected data both in 
time and in space. If time location is a trivial task (the vehicle 
carries a real time clock), the spatial location requires 
information related to the navigation system of the vehicle. 

The main function of the navigation system of an AUV is to 
provide an estimate of the vehicle position in real time. In the 
case of Isurus, the navigation system receives depth data 
from a pressure cell, attitude data from an integrated set of tilt 
sensors and digital compass, and velocity data from an 
encoder coupled to the propeller. Absolute positioning data is 
provided by time of flight based range measurements to a set 
of acoustic transponders deployed in the operation area. This 
system employs a Kalman filter based procedure to obtain a 
real time position estimate. This estimate is computed by time 
integrating the vehicle velocity and correcting the integrated 
value with range measurements from the acoustic system. 

Although this estimate is accurate enough for the guidance 
and control of the vehicle, it is not well suited for spatially 
locating the data collected by the AUV. In fact, the discrete 
nature of the correction mechanism gives rise to 
discontinuities in the evolution of the estimate, which is a 
major drawback for spatially locating the collected data. 

This paper presents an algorithm that processes the data 
collected by the vehicle navigation system during the 
execution of a mission and produces an estimate of the 
trajectory described by the vehicle more suited for spatially 
locating the oceanographic data gathered. This estimate 
evolves continuously in time and is computed using 
techniques based on a nonlinear stochastic smoothing 
scheme. 

The paper is organized as follows. In section II we describe 
the Isurus AUV. Then we describe the Isurus navigation 
algorithm that fuses in real time the dead reckoning data 
together with absolute position information. In section IV we 
present the post mission trajectory smoothing algorithm. 
Finally, we present experimental results that show that the 
post-mission smoothing algorithm can greatly improve the 
position estimate given by the on-board navigation system, 
mainly when the vehicle moves in turns or when range 
measurements are scarce. 

II. THE ISURUS AUV 

Autonomous Underwater Vehicles constitute powerful and 
effective tools for underwater data gathering. These vehicles 
operate with no external direct control, carrying a set of 
relevant sensors to characterize the underwater environment 
and to locate themselves. 

Isurus (Fig. 1) is a REMUS (Remote Environment Measuring 
UnitS) class AUV, built by the Woods Hole Oceanographic 
Institution, MA, USA, in 1997. These vehicles are low cost, 
lightweight AUVs specially designed for coastal waters 
monitoring [1]. The reduced weight and dimensions makes 
them extremely easy to handle, requiring no special 
equipment for launching and recovery. For the past 6 years, 
the LSTS has been customizing Isurus, and performing 
oceanographic and environmental monitoring missions with 
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it in different operational scenarios, including estuaries, river 
dams and coastal ocean waters [2,3]. 

 
Fig. 1 – The Isurus AUV at the surface 

Isurus has a diameter of 20 cm and is about 1.5 meters long, 
weighting about 35 kg in air. Inside the hull, several 
subsystems have been improved or specifically developed at 
LSTS, contributing to the continuous enhancement of the 
vehicle performance and reliability. The maximum forward 
speed of the vehicle is 4 knots, however the best energy 
efficiency is achieved at about 2 knots. At this velocity, the 
energy provided by a set of rechargeable Lithium-Ion 
batteries may last for over 20 hours (i.e., over 40 nautical 
miles). Although small in size, this vehicle can accommodate 
a wide range of oceanographic sensors, such as CTD, 
altimeter, sidescan sonar, and optical backscatter. Each of 
these sensors can be independently installed on board, 
enabling the use of the vehicle in different configurations 
according to the requirements of each mission. 

The navigation system of the Isurus AUV estimates the 
position of the vehicle based on data provided from several 
devices and systems. The vertical coordinate is obtained from 
a depth cell installed on the vehicle. To estimate the vehicle 
horizontal position, the navigation system fuses together dead 
reckoning data with absolute positioning data. The dead 
reckoning data is composed by the vehicle attitude, obtained 
from a digital compass and a set of tilt sensors, and also by 
the vehicle velocity with respect to the water, obtained from 
an encoder that measures the propeller rotation speed. 

The absolute positioning data consists in range measurements 
to acoustic beacons deployed in the operation area. These 
beacons (Fig. 2) are multi-frequency transponders and were 
developed at the LSTS [4]. Each beacon can be configured to 
reply with a signal of given frequency when interrogated by 
another signal of a possibly different frequency. 

 
Fig. 2 – Multi-frequency transponder 

To obtain a range measurement to a particular beacon, the 
vehicle has to send an interrogation signal and then wait for 

and detect the beacon reply signal. The range is computed 
from the overall time of flight of the acoustic signals 
exchanged [5]. 

III. NAVIGATION ALGORITHM 

Since the vehicle depth is obtained directly from the depth 
cell, the major task of the navigation algorithm is the fusion 
of the dead reckoning data with the range measurements to 
estimate the horizontal position. 

The instantaneous velocity with respect to the water is 
obtained by measuring the propeller rotation speed and the 
vehicle heading, pitch and roll. Velocity measurements are 
fused together with range measurements by a Kalman filter 
based algorithm [6], taking advantage of the characteristics of 
each type of data. On one hand, the vehicle velocity is 
available at a high rate, but its integration leads to a drift in 
the estimated position. On the other, range measurements, 
available at a lower rate, can be noisy but do not drift over 
time. The algorithm updates the estimate of the vehicle 
position at the same rate the velocity is measured, and 
corrects it whenever a new range measurement is available, 
giving the best estimated position in real-time. 

The horizontal position of the vehicle is defined by the north 
(x) and east (y) deviations from a base point defined for each 
operation. The filtering algorithm is based on a simple model 
that relates the propeller speed (ω), the vehicle pitch (θ) and 
heading (ψ) angles to the time derivatives of the x and y 
coordinates, defined by the following equations 

cos( )cos( ) xx k w= ω θ ψ +  (1) 

cos( )sin( ) yy k w= ω θ ψ +  (2) 

This model roughly characterizes the vehicle motion in a 
straight line at a constant speed. In the above equations, wx 
and wy represent the north and east components of the water 
current velocity, respectively, and k is a constant of 
proportionality obtained from a linearization of the 
relationship between propeller rotation speed and vehicle 
longitudinal velocity in steady state. 

The navigation algorithm is based on a continuous discrete 
Kalman filter, with the vehicle motion characterized by the 
differential equations (1) and (2). The filter has a state of 
dimension 4, corresponding to the estimates of the north and 
east coordinates of the vehicle position and also to the north 
and east components of the water speed. To keep the notation 
simple the filter state will be represented by 

[ ]x yE x y w w= . The filter also keeps a matrix with the 
covariance of the estimation error (P) that is used to assess 
the quality of the position estimate. 

Between the receptions of two consecutive range 
measurements, the evolution of E and P is ruled by the 
differential equations 
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∂ ∂= ⋅ + ⋅ +Q  (4) 

where Q is a, possibly time varying, symmetric semi-positive 
definite matrix that represents the rate of increase of the 
estimation error, due to the imperfect modeling of the vehicle 
motion. 

Whenever a new range measurement is received and is 
validated, the state E and the covariance matrix P are 
corrected according to the expressions 

)( *rrKEE −⋅+= −+  (5) E P
−−+ ⋅⋅−= PHKPP  (6) 

where E− and P− are the values of the E and P before the 
correction and E+ and P+ are their values after the correction; 
r is the measured range and r* is the expected range to the 
transponder. The matrices H and K are, respectively, the 
jacobian of the observation with respect to the state, and the 
Kalman gain [5,6]. 

IV. TRAJECTORY SMOOTHING 

The navigation algorithm presented above provides at each 
moment an estimate of the vehicle position. This estimate is 
updated by two different mechanisms with quite different 
features. The first depends on the dead reckoning data and is 
described by the differential equations (3) and (4). It is a 
sampled continuous process, due to the sampling of the dead 
reckoning data (performed at 10 Hz). The other updating 
mechanism acts whenever a new range measurement is 
available and updates the position estimate according to the 
correction equations (5) and (6). It is, therefore, a discrete 
event process. 

Due to the discrete time nature of the correction mechanism, 
the position estimate given by the navigation algorithm does 
not evolve continuously (even if the dead reckoning were 
performed at an infinite sampling rate). It can have 
discontinuities at the moments of corrections motivated by 
reception of range measurements. Such discontinuities are 
inherent to the navigation algorithm employed as it provides 
at each instant the best estimate of the vehicle position at that 
instant, based on all the information collected up to that 
moment. 

While these discontinuities in the estimate of the vehicle 
position are acceptable as far as navigation is concerned, they 
are a major drawback whenever the vehicle is collecting data 
that have to be spatially located, as in the case of bathymetry 
missions. To overcome such difficulty we implemented an 
algorithm to post process the data collected by the navigation 
system during the execution of the mission. The algorithm is 

applied upon the execution of the mission and computes the 
spatial evolution of the vehicle. The new position estimates 
are based on the information collected during all the mission, 
as opposed to the real-time estimates that can only take into 
account past data. 

The smoothing algorithm, described below, is based on the 
Rauch-Tung-Striebel nonlinear smoother [6]. The smoother 
has the same state of the real time filter. 

Let {  with i}it 0,...N= , be the instants of time at which the 
dead reckoning data were collected during the mission. To 
simplify the presentation, we are assuming here that the range 
measurements can only occur at the time instants ti. The goal 
of the smoothing algorithm is to compute the estimate of the 
state E and of the error covariance matrix P, at the time 
instants ti, based on all the data collected. Such estimates will 
be denoted by  and , respectively. These values are 
computed in two steps. The first step is essentially the same 
as the real time Kalman filter. This step computes a sequence 
of the estimates of the state E and of the error covariance 
matrix P, at the time instants t

|i N

1]

|i N

i, each one based only on past 
data. These estimates, denoted by Ei and Pi, respectively, are 
obtained sequentially according to the following procedure. 
The differential equations (3) and (4) are integrated in the 
interval [ ,i it t +  with initial data Ei and Pi, respectively, to 
obtain 1iE−

+  and 1iP−
+ . If there is no new range measurement at 

the instant t 1i+ , then 1iE 1iE−
+ +=  and 1i iP P 1

−
+ =

1it +

+ . If there is a 
new range measurement at the instant , then 1 1i iE E+

+ +=  
and 1i 1iPP +

+ += , where 1iE+
+  and  are computed according 

to (5) and (6). 
1iP+
+

In the second step of the smoothing algorithm,  and  
are computed from  and  (and using the values 
from the first step), according to the equations 

|i NE |i NP

1|i NE + 1|i NP+

| 1|(i N i i i N i i iE E K E E b+ )= + −φ −  (7) 
1(i i i i i i iK P P Q )−= φ φ φ +T T  (8) 

| 1|(i N i i i N i i i i iP P K P P Q K+= + − φ φ −T ) T  (9) 

The initial conditions are  and |N N NE E= |N N NP P= . In the 
above equations,  is the value at t  of the solution of the 

differential equation 
ib 1i+

F
E F∂
∂= + F

E Eb b  with the initial 

condition 

∂
∂−

( ) 0ib t = , 
1

( ,
i

i

t

i i
t

Q t
+

) ( ) ( , )iQ t d= φ τ∫ τ φ τ τT , and 

1( ,i it + )itφ = φ , where ( , )φ ⋅ ⋅  is the transition matrix associated 
to the linearized vehicle dynamics, i.e., F

Ez z∂
∂= . 

V. EXPERIMENTAL RESULTS 

Both the navigation and the post mission smoothing 
algorithms described here have been extensively tested 
different scenarios of operation. The testing program enabled 
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us to fine tune the parameters of both algorithms for optimal 
performance. Currently, these algorithms are employed in 
virtually all the missions performed with Isurus. 

We present below some results illustrating the behavior of 
both the real time navigation and the post mission smoothing 
algorithms. The data was collected during a 2 hours mission 
that took place 2 km off the portuguese coast near Aveiro. In 
this mission, Isurus collected CTD and bathymetric data in an 
area about 100 m by 200 m at several depths. 

Fig. 3 shows the real-time estimate of the vehicle position 
computed by the navigation algorithm (red line) as well as 
the desired trajectory (black line). The discontinuous nature 
of the estimated trajectory can be readily observed in this 
figure, since there were large corrections of the estimated 
position. Typically, these large corrections arise just after the 
vehicle being without receiving range measurements for a 
long time (typically more than 10 seconds). 
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Fig. 3 – Real time trajectory estimation 

It should be referred here that the lateral offset between the 
two trajectories in the east-west lines is not the result of a 
poor performance of the navigation algorithm, but is a direct 
consequence of the strong water current from the north that 
was present during the mission. In fact, the heading reference 
generated by the vehicle guidance system does not integrate 
the off track error, giving rise to large off track errors when 
there are large water currents perpendicular to the desired 
trajectory. 
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Fig. 4 – Post mission trajectory estimation 

Figure 4 presents the estimated trajectory produced by the 
smoothing algorithm. As expected, this trajectory does not 
present discontinuities, since each correction due to a range 
measurement is distributed along the mission interval, and is 
not accounted for at a single instant of time. 

A detail of the two estimates of the vehicle trajectory is 
shown in fig. 5, were the red line corresponds to the real time 
estimate and the blue one to the post mission estimate. The 
two estimates are very similar when the vehicle is going in a 
straight line or is turning slowly. When the vehicle makes 
tight turns or when there are large corrections in the real time 
estimate, the two estimates can be a few meters away. Since 
the dynamic model used here does not describe with 
sufficient accuracy the vehicle motion during turns, larger 
corrections in the real time estimate are expected when the 
vehicle is turning. 
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Fig. 5 – Comparison of the two estimates 

One advantage of using stochastic filtering techniques, like 
the Kalman filter used in the real time estimation or the 
smoothing filter used the post mission estimation, is the 
information provided by the error covariance matrix P. The 
2×2 sub-matrix of P, denoted Pxy, and corresponding to the x 
and y components of the filter state E, can be used to measure 
the quality of the estimate of the vehicle position. The matrix 
Pxy defines an uncertainty ellipse in the plane that 
characterizes the error of the position estimate. This ellipse in 
defined by 3 parameters: the lengths of its two principal axes 
and the orientation of its major axis.  

Figures 6 and 7 show the evolution of the lengths of the axes 
of the uncertainty ellipse along the mission for the real time 
and the post mission estimates, respectively. The higher 
values of uncertainty occur either when the vehicle is turning 
or when range measurements are scarce. In the real time case 
the lengths of the axes are mostly between 1 and 2 meters, 
while in the post mission case these lengths are almost 
always below 0.8 meters. This illustrates the superior 
accuracy of the post mission trajectory estimate, as expected. 
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Fig. 6 – Real time uncertainty ellipse axes 
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Fig. 7 – Post mission uncertainty ellipse axes 

Finally, figure 8 shows the evolution of the lengths of the 
major axes of the uncertainty ellipses for both the real time 
estimate (red line) and the post mission estimate (blue line), 
during a short period of the mission. The real time 
uncertainty presents a typical saw-tooth behavior: the 
uncertainty grows as the dead reckoning data is integrated 
over time and is “reset” to a low value whenever a new range 
measurement is received by the navigation algorithm. On the 
contrary, the uncertainty of the post mission estimate varies 
smoothly, reflecting the continuity properties of this estimate. 
Nonetheless, the two uncertainties evolve in a correlated 
way, since their higher values and their lower values occur at 
almost the same instants of time. 
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Fig. 8 – Comparison of the two uncertainties 

VI. CONCLUSIONS 

Both the real time and the post mission trajectory estimation 
algorithms described in this paper have been successfully 
implemented and tested under several conditions. In a first 
stage, the performances of both algorithms have been 
evaluated with data taken from previous missions. After a 
few adjustments in the parameters of the algorithms, they 
were finally validated in real applications. 

The results obtained so far also show that the post mission 
trajectory smoothing algorithm can greatly improve the 
position estimate given by the on-board navigation system, 
mainly when the vehicle moves in turns or when range 
measurements are scarce. This is particularly relevant in the 
characterization of underwater features, as collected data has 
to be spatially located with the maximum possible accuracy. 

Although Isurus is not equipped with sophisticated dead 
reckoning navigation systems such as inertial measurement 
units or Doppler based acoustic velocimeters, the 
performance of the post mission algorithm seems to be very 
good, even when the vehicle is turning. 

REFERENCES 

[1] C. von Alt, B. Allen, T. Austin, and R. Stokey, “Remote 
Environmental Measuring Units”, Proceedings of the 
Autonomous Underwater Vehicle's 94 Conference, 
Cambridge, USA, 1994. 

[2] N. Cruz, J. Sousa, F. L. Pereira, A. Matos, E. Silva, J. 
Coimbra, and E. Dias, “PISCIS: Multiple Autonomous 
Underwater Vehicles for Environmental and 
Oceanographic Field Studies”, Proceedings 
Environment 2010 Conference, Porto, Portugal, 2003. 

[3] N. Cruz, A. Matos, A. Martins, J. Silva, D. Santos, D. 
Boutov, D. Ferreira and F. L. Pereira, “Estuarine 
Environment Studies with Isurus, a REMUS class 
AUV”, Proceedings of the MTS/IEEE Oceans’99 
Conference. Seattle, USA, 1999. 

[4] N. Cruz, L. Madureira, A. Matos, and F. Lobo Pereira, 
“A Versatile Acoustic Beacon for Navigation and 
Remote Tracking of Multiple Underwater Vehicles”, 
Proceedings of the MTS/IEEE Oceans’01 Conference, 
Honolulu, USA, 2001. 

[5] A. Matos, N. Cruz, A. Martins and F. Lobo Pereira, 
“Development and Implementation of a Low-Cost LBL 
Navigation System for an AUV”, Proceedings of the 
MTS/IEEE Oceans’99 Conference, Seattle, USA, 1999. 

[6] A. Gelb, Applied Optimal Estimation, MIT Press, 1989. 
 

 1238 


	Aníbal Matos, Nuno Cruz and Fernando Lobo Pereir�

