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1   Introduction

The philosophy applied in current seismic design 
codes and recommendations considers that buildings 
should respond elastically to small magnitude 
earthquakes, but for larger magnitudes a nonlinear 
structural response is explored. Thus, there is a current 
need for accurate nonlinear models to account for 
the hysteretic behavior of reinforced concrete (RC) 
structures (Duarte, 1991). The determination of the 
effects of earthquakes on buildings generally requires 
the consideration of two horizontal component loads in 
columns, which tend to induce larger demands than one-
directional actions. In many situations, biaxial demands 
on columns also result in the torsional response of 
buildings, namely as a result of in-plane structural 
irregularities (Romão et al., 2004).

With regard to the modeling of RC members under 
cyclic 2D bending combined with axial load, current 
knowledge is still far behind that for uniaxial bending, 
and many questions need to be verifi ed in the modelling 
of the biaxial response of RC elements. Different 
modelling strategies have been proposed for the 

simulation of the biaxial cyclic behavior of RC elements 
with axial force. A detailed review of the available 
models is presented in CEB (1996) and Fardis (1991). 
In addition to the fi ber models (Petrangeli et al., 1999; 
Taucer et al., 1991; Spacone et al., 1992), other analytical 
models are available, following the concepts of classical 
plasticity (Pecknold, 1974), Mroz multisurface plasticity 
(Takizawa and Aoyama, 1976; Powell and Chen, 1986; 
Galal and Ghobarah, 2003), Bouc-Wen (Wen, 1976), 
hysteresis modelling (Romão et al., 2004; Kunnath and 
Reinhorn, 1990; Casciati, 1989; Wang and Wen, 2000), 
bounding surface plasticity (Sfakianakis and Fardis, 
1991a, 1991b; Bousias et al., 2002), or lumped damage 
models (Marante and Florez-Lopez, 2002, 2003; Mazza 
and Mazza, 2008), among others. The available test 
results for biaxial bending are not as extensive and the 
development and calibration is not exhaustive. 

This study intends to evaluate and compare the 
adequacy of different nonlinear modelling strategies 
in the representation of RC columns’ response when 
subjected to axial force combined with cyclic biaxial 
horizontal loading.

2   Specimen description and testing conditions

Rodrigues et al. (2010) carried out an experimental 
campaign on 24 full-scale RC columns, tested under 
uniaxial and biaxial cyclic loading. The specimens 
consisted of RC columns built as a cantilever cast in 
a heavily reinforced foundation. The columns were 
subjected to constant axial load and cyclic lateral 
loading imposed under displacement controlled 
conditions. The general characteristics of the specimens 
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and testing conditions are summarized in Table 1. A 
more detailed description of the columns’ geometry, 
material properties, reinforcement details and test results 
is reported in (Rodrigues et al., 2012). The general 
characteristics of the specimens and testing conditions 
are summarized in Fig. 1. 

In order to characterize the response of the column 
specimens, cyclic lateral displacements were imposed at 
the top of the column with steadily increasing demand 
levels. In the biaxial tests, four different patterns for 
the demands history were considered, namely one in 
which the displacement cycles are applied alternately 
in the two horizontal directions (cruciform path), one 
with an expanding rhombus shape, one expanding 
square centered in the origin and fi nally a circular 
load path. Three cycles were repeated for each lateral 
deformation demand level. This procedure allows for an 
understanding of the column’s behavior and a comparison 
between different tests. It provides information for the 
development and calibration of numerical models; in this 
case, the following nominal peak displacement levels  
were considered in the directions of loading (x and y): 
3, 5, 10, 4, 12, 15, 7, 20, 25, 30, 35, 40, 45, 50, 55, 60, 
65, 70, 75, 80 (Rodrigues et al., 2010, 2012c). For all the 
tests, the fi rst branch of the load path is imposed in the 
direction (X) of the column.

For each test on the column specimens, the following 
general designation “PB$$-N##” was adopted, where:

• $$ takes the value “01” for the test in the 
column’s strong direction (X), the value “02” for the 

weak direction test (Y), and the value “12” for the biaxial 
test;

• ## represents the reference number of the 
column specimen.

3   Numerical tool and modelling strategies

The numerical analyses developed and described 
in this paper with different nonlinear modelling 
strategies were performed using the computer program 
SeismoStruct (SeismoSoft, 2004). The program includes 
models for the representation of the behavior of spatial 
frames under static and/or dynamic loading, considering 
both material and geometric nonlinearities. With the 
software, seven types of analyses can be performed, 
namely: dynamic and static time-history analysis, 
conventional and adaptive pushover, incremental 
dynamic analysis, modal analysis, and static analysis 
(possibly nonlinear) under quasi-permanent loading. The 
software allows for the use of elements with distributed 
inelasticity (force or displacement-based formulations) 
and elements with lumped-plasticity (with fi xed length, 
so-called plastic-hinge). Fiber discretization is adopted 
to represent the behavior at the section level (see Fig. 
2), where each fi ber is associated with a uniaxial stress-
strain law. The sectional moment-curvature state of the 
beam and column elements is then obtained through 
the integration of the nonlinear uniaxial stress-strain 
response of the individual fi bers into which the section 
has been subdivided.

Table 1    Specimen description and testing conditions

Column Cross-section
(cm × cm)

fcm
(MPa)

N
(kN)

ν Displacement path type

PB01-N01 20 × 40 48.35 170 0.04 Uniaxial strong
PB02-N02 Uniaxial weak
PB12-N03 Cruciform
PB12-N04 Rhombus
PB01-N05 30 × 40 21.40 300 0.12 Uniaxial strong
PB02-N06 Uniaxial weak
PB12-N07 Rhombus
PB12-N08 Quadrangular
PB12-N17 36.30 510 Circular
PB01-N09 30 × 50 24.39 300 0.08 Uniaxial strong
PB02-N10 Uniaxial weak
PB12-N11 Rhombus
PB12-N12 Quadrangular
PB12-N18 36.30 440 Circular
PB01-N13 30 × 30 21.57 210 0.1 Uniaxial strong
PB12-N14 Rhombus
PB12-N15 Quadrangular
PB12-N16 Circular
PB12-N19 30 × 50 43.14 300 0.045 Rhombus
PB12-N20 600 0.09 Rhombus
PB12-N21 30 × 40 43.14 620 0.12 Rhombus
PB12-N22 Quadrangular
PB12-N23
PB12-N24

30 × 30 36.30 650 0.2 Rhombus
Quadrangular

fcm: Mean concrete compressive strength;   N: Axial load;   ν = N/(Ac·fcm): Axial load ratio
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3.1   Numerical modelling strategies

In this work, three nonlinear modelling strategies are 
compared, based on: elements with lumped-plasticity 
(Fig. 3a); elements with distributed inelasticity and 
force-based formulation (Fig. 3(b)); and elements 
with distributed inelasticity and displacement-based 
formulation (Fig. 3(c)). The three modelling strategies 
were applied to each column specimen and the obtained 
results were compared.

Decisions for each modelling strategy were taken 
based on the results of parametric studies performed 
by other authors (Taucer et al., 1991; Calabrese, 2008; 
Calabrese et al., 2010), as described next.

Different studies have proposed expressions to 

estimate the plastic hinge length (Lp) of RC elements 
to be adopted in lumped plasticity models (Bae and 
Bayrak, 2008). Priestley and Park (1987) proposed a 
formulation that estimates the plastic hinge length based 
on the distance of the critical section from the point of 
contrafl exure and on the diameter of the longitudinal 
reinforcement bars. Based on this formulation, Paulay 
and Priestley (1992) reported that for typical RC 
columns, the plastic hinge length is approximately equal 
to half of the cross-section depth. Thus, in the simulations 
performed for the uniaxial tests, the plastic hinge length 
was considered equal to half of the cross-section depth. 
For the biaxial tests, based on experimental evidence, 
other authors have concluded that the plastic hinge 
length is not strongly affected by 2D loading (Tsuno 
and Park, 2004). The plastic hinge length in rectangular 
columns under biaxial loading approximately assumes 
the length observed in the column tested uniaxially in 
its strong direction as observed by (Rodrigues et al., 
2012a). In the analyses performed in this study, half of 
the larger dimension of the cross-section was considered 
as the plastic hinge length.

For the force based formulation, seven integration 
points were considered, based on the results of Calabrese 
et al. (2010). These authors point out that at least six 
integration sections are needed in order to obtain a 
completely stabilized prediction of the local response.

According to the results of Calabrese et al. (2010), for 
displacement based formulations, a good approximation 
to a cantilever column response can be obtained with a 
mesh discretization of at least four elements, with two 
Gauss-Legendre points per element, if all elements 
have the same length. Considering this and taking into 
account the concentration of the nonlinear response 
close to the fi xed end of the column (plastic hinge 
length), a discretization of the column in six elements 
with the length presented in Fig. 3 was adopted.

Fig. 1    RC column specimen dimensions and reinforcement detailing
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3.2  Material properties and section models

The consideration of nonlinear material behavior 
in the prediction of the RC columns’ response requires 
accurate modelling of the uniaxial material stress-strain 
cyclic response. In the present section, the concrete and 
reinforcing steel constitutive models used and the value 
considered for each parameter are presented.
3.2.1   Concrete

For the concrete, a model based on the Madas and 
Elnashai (1992) uniaxial model, which follows the 
constitutive law proposed by Mander et al. (1988), is 
used. The cyclic rules included in the model for the 
confi ned and unconfi ned concrete were proposed by 
Martinez-Rueda and Elnashai (1997). The confi nement 
effects provided by the transverse reinforcement were 
considered through the rules proposed by Mander et al. 
(1988), whereby constant confi ning pressure is assumed 
throughout the entire stress-strain range, indicated by the 
increase in the peak value of the compression strength and 
the stiffness of the unloading branch (SeismoSoft, 2004). 
The input parameters of the model for the concrete are: 

compressive strength (fc), tensile strength (ft), the strain 
at peak strength (εc) and the confi nement factor. All the 
adopted values are in accordance with the properties 
obtained in the material tests (Rodrigues et al., 2010).
Table 2 presents the properties considered in the 
numerical models. Material mechanical parameters 
were defi ned based on test results on samples (Rodrigues
et al., 2010).
3.2.2   Reinforcement steel

The uniaxial model proposed by Menegotto and 
Pinto (1973), coupled with the isotropic hardening 
rules proposed by Filippou et al. (1983), was adopted 
for the steel reinforcement. This steel model does not 
represent the yielding plateau characteristic of the 
mild steel virgin curve. The model takes into account 
the Bauschinger effect, which is relevant for the 
representation of the columns’ stiffness degradation 
under cyclic loading. The input parameters of the model 
are: the yield strength (fy); the elastic Young modulus 
(Es); the strain-hardening ratio (r) and fi ve parameters 
to describe the transition from elastic to plastic 

Fig. 3   Modelling strategies with indication of the control section points: (a) lumped-plasticity element; (b) distributed inelasticity 
             element with force-based formulation; (c) distributed inelasticity element with displacement-based formulation
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Table 2     Concrete mechanical parameters for the numerical models

Compressive 
strength
fc (MPa)

Tensile strength
ft (MPa)

Strain at peak 
strength
εc (%)

Confi nement 
factor*

PB01-N01-PB12-N04 39.4 3.94 0.36 1.11
PB01-N05– PB12-N08 21.4 2.35 0.34 1.12
PB01-N09- PB12-N12 24.4 2.57 0.36 1.12
PB01-N13- PB12-N16 21.7 2.98 0.33 1.12
PB12-N17- PB12-N18 36.3 3.24 0.36 1.12
PB12-N19- PB12-N22 43.14 3.28 0.42 1.12
PB12-N23- PB12-N24 36.3 3.24 0.36 1.12

               * - the confi nement factor was obtained from Mander et al. (1988)
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branches (R0, a1, a2, a3, and a4). The model parameters 
considered are summarized in Table 3. All the adopted 
values are in accordance with the properties obtained 
in the material tests (Rodrigues et al., 2010). Table 2 
presents the properties considered in the numerical 
models.Material mechanical parameters were defi ned 
based on test results on samples (Rodrigues et al., 2010).

4   Comparison between modelling strategies

The three modelling strategies were used to 
reproduce the response of the specimens tested. For 
the parameters controlling the cyclic response of the 
reinforcement steel, the default values were adopted as 
indicated in the software manual (SeismoSoft, 2004) and 
specifi ed in Table 3. For each column analyzed, the axial 
load and the corresponding horizontal displacement 
law were imposed in accordance with the experimental 
results. The numerical results for each modelling 
strategy were compared with the experimental results 
and are discussed in the next sections.

4.1   Shear-drift envelopes

The experimental shear-drift envelope curve 
obtained for each column is compared with the results 
of the nonlinear models in terms of initial stiffness, and 
evolutions of tangent and secant stiffness.

Figure 4 presents, as an example, the shear-drift 
envelopes in one direction for the columns with cross-
sectional dimensions of 30cm×50cm for uniaxial and 
biaxial tests (columns N09 to N12 and N18). From the 
analysis of the shear-drift envelopes, a good agreement 
was found in the numerical representation of the 
experimentally measured response. The differences 
found between the different modelling strategies are 
discussed next.
4.1.1   Global comparison

In order to compare the envelopes obtained with the 
experimental results and with the numerical models, 
the correlation coeffi cient (R2) was calculated. As 
usual, the statistical measure R2 assumes the value of 
1.0 when a perfect correlation between the numerical 
and experimental data is found. In these comparisons, 
by convention, 0.75 is established as the minimum R2 
value for a good fi t. Based on the obtained R2 results for 
all analyses, presented in Fig. 5, the following can be 
concluded:

• For the majority of numerical analyses 
performed, correlation coeffi cients higher than 0.75 
were obtained, indicating a good representation of the 
experimental envelopes.

• For each studied column, similar correlation 
coeffi cients were found with the three modelling 
strategies. However, the modelling strategy with the 
lumped plasticity element presents the lowest correlation 
coeffi cients.

• For all columns analyzed under biaxial 
demands, the correlation coeffi cient for the strong (X) 
and weak (Y) directions is similar.
4.1.2   Initial stiffness comparison

The initial stiffness of the column evaluated from the 
shear drift envelope curves obtained with the different 
numerical models was compared with the corresponding 
initial stiffness derived from the experimental tests. 
Figure 6 shows the ratio between the experimental and 
numerical initial stiffness obtained for all columns, from 
which the following can be concluded:

• For the uniaxial tests, the ratio assumes values 
close to 1, indicating that all models represent the 
columns’ initial stiffness well, with a maximum sub-
evaluation of about 25%.

• For the biaxial results, a higher dispersion 
was found in the calculated initial stiffness, with a 
sub-evaluation in the column strong direction (around 
25%–50%) and an over-evaluation in the weak direction 
(around 25%).

• For the biaxial tests, the distributed plasticity 
model with the force based formulation gave the worst 
estimate of the initial stiffness.
4.1.3   Secant stiffness comparison

The evolution of the columns’ secant stiffness with 
the drift demand was evaluated by comparing the peak-
to-peak secant stiffness of the fi rst cycle of each drift 
demand level. Figure 7 shows examples of the reduction 
in secant stiffness with drift demand for the columns 
PB01-N1, PB02-N6, PB12-N7, and PB12-N12. The 
secant stiffness evolution for all the tested columns 
was compared with the corresponding values obtained 
with the numerical models developed. Regardless of the 
displacement history (uniaxial or any path for biaxial 
loading), the secant stiffness evolution obtained from 
the tests is captured very well by all the modelling 
strategies.
4.1.4   Tangent stiffness comparison

The evolution of the tangent stiffness determined 

Table 3    Steel mechanical parameters for the numerical models

Elasticity 
modulus
Es (GPa)

Yield 
strength

Strain 
hardening 
parameter

Transition 
curve initial 
shape

Transition 
curve shape

Isotropic 
hardening

fy (MPa) r (‰)      R0 a1 a2 a3 a4

PB01-N01- PB12-N04 194.7 432.63 2.71      20 18.5 0.15 0.025 2
PB01-N05- PB12-N16 203.46 429.69 2.69
PB12-N17- PB12-N24 189.53 450.26 3.32



558                                            EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                             Vol.11

from the shear-drift envelope curves was analyzed for 
all the studied columns of the fi rst cycle of each drift 
demand level. Figure 8 shows examples of the tangent 
stiffness evolutions (experimental and numerical) with 
the drift demands, namely for columns PB01-N1, PB02-
N6, PB12-N7, and PB12-N12. From the results obtained 

for all columns, the following was observed:
• The tangent stiffness presents similar evolutions 

for the three modelling strategies.
• Compared with the experimental results, 

numerical models show diffi culties in representing 
the tangent stiffness for lower drift demands (less than 

Fig. 4    Shear-drift envelopes for 30 cm×50 cm columns (measured and calculated). FB - distributed inelasticity-displacement-base 
             formulation, DB - distributed inelasticity-force-base formulation, LP – lumped plasticity
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Fig. 6   Initial stiffness ratio between experimental and numerical results: (a) uniaxial texts; (b) biaxial tests – strong direction (X); 
             (c) biaxial tests – weak direction (Y)

Fig. 5   Correlation coeffi cients of shear-drift envelopes between experimental and numerical results (R2): (a) uniaxial texts; (b) 
             biaxial tests – strong direction (X); (c) biaxial tests – weak direction (Y)

1%). The diffi culties in representing the initial behavior 
were already reported in the analysis of the differences 
obtained for the initial stiffness.

• For drift demands larger than 1%, a good 
representation of the tangent stiffness evolution is 
reached with the numerical models, corresponding to 
a plateau in the post-yielding zone (approximately zero 
stiffness). However, for drift demands larger than those 
corresponding to the beginning of the column strength 

degradation, the numerical models do not accurately 
represent the tangent stiffness evolution. This aspect 
is more evident for the columns under biaxial loading 
conditions, since the strength degradation starts for 
lower drift demands, as seen in the examples presented 
in Fig. 8, where the post-yielding plateau is shorter.

4.2   Cyclic response

In this section, the accuracy of the models in the 
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Fig. 7   Secant stiffness evolution for columns PB01-N1, PB02-N6, PB12-N7, and PB12-N12: Experimental and numerical results.
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representation of the cyclic response of the RC columns 
under study is evaluated. Examples of shear-drift 
responses comparing experimental and numerical results 
are presented in Fig. 9, namely for columns PB01-N1, 
PB02-N6, PB12-N7, and PB12-N12.
4.2.1   Overall analysis

The general analysis of the cyclic response of the 
columns obtained with the three modelling strategies 
and the comparison with the corresponding experimental 
results show that:

• Even when a good representation of the global 
columns’ response is achieved, the numerical response 
may not adequately capture the strength degradation for 
the largest deformation demands, which is associated 
with the buckling of the reinforcing steel bars.

• In many cases, the unloading-reloading phase of 
the columns’ cyclic response obtained with the numerical 
models does not accurately capture the pinching effect 
observed experimentally. This can be justifi ed by the 
limitations of the models in the representation of the 
longitudinal reinforcing steel slippage.

4.2.2   Shear force evolution
In order to evaluate the accuracy of the numerical 

models studied in the representation of the shear force 
evolution obtained experimentally, the frequency domain 
error (FDE) index (Lepage et al., 2010; Dragovich 
and Lepage, 2009) was calculated. The FDE index 
(Dragovich and Lepage, 2009) measures the deviation 
between two waveforms, in this case the shear force 
measured in the test and the corresponding calculated 
shear force for each modelling strategy. The FDE index 
quantifi es amplitude and phase deviations between two 
signals, giving an error factor with a value between 0 
and 1. In this analysis, it is considered that a FDE index 
larger than 0.75 represents a poor correlation and a value 
below 0.25 represents a very good correlation. These 
limits were proposed in (Lepage et al., 2010).

The FDE indices obtained for all analyses are 
represented in Fig. 10. From the analysis of the results, 
the following conclusions can be drawn:

• For all columns studied, with uniaxial and 
biaxial loading, the three developed numerical models 
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Fig. 8  Tangent stiffness evolution for columns PB01-N1, PB02-N6, PB12-N7, and PB12-N12: Experimental and numerical results
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adequately represent the shear force evolutions recorded 
in the experimental tests. The calculated FDE index 
was slightly larger than 0.25. Moreover, no signifi cant 
differences were found in the FDE index for the three 
modelling strategies applied to each column tested.

• For all columns analyzed under biaxial demands, 
the FDE index is lower in the weak direction (Y) than in 
the strong direction (X), which is in accordance with the 
larger differences identifi ed in this direction in terms of 
stiffness evolution and strength degradation.
4.2.3   Cumulative energy dissipation

The accuracy of the nonlinear models is characterized 
here in terms of the total energy dissipated, comparing 
the values calculated with the numerical models with 
the values obtained from the tests on columns. Figure 
11 shows examples of the evolution of the cumulative 
dissipated energy and Fig. 12 shows the ratio between 
the numerical and experimental values of the total 
energy dissipated. Based on the obtained results, the 
following can be concluded:

• Generally, for the columns analyzed 

under uniaxial loading conditions, a considerable 
overestimation of the total energy dissipated was 
obtained with the numerical models (Fig. 12(a)). This 
effect was not observed in any column under biaxial 
loading. The overestimation of the energy dissipated is 
justifi ed by the inadequacy of the numerical models in 
the strength degradation representation.

• Results for the columns with biaxial loading, 
analyzed for each direction independently, show a 
variation in the total energy dissipated between 25% and 
50% (Figs. 12(c) and 11(d)), being larger for the weak 
direction (Y).

• The sum of the total energy dissipated in 
each direction (Fig. 12(b)) demonstrates, generally, an 
overestimation with the adopted numerical strategies 
studied. For columns N22, N23, and N24, the higher 
axial load level anticipates the collapse for lower drift 
demands, and therefore, the total energy dissipated 
calculated from the numerical response underestimates 
the experimental value. This is justifi ed by the decreased 
adequacy of the models in accurately representing the 
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Fig. 9   Shear-drift response for columns PB01-N1, PB02-N6, PB12-N7, and PB12-N12: Experimental and numerical results
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Fig. 9   Continued

Fig. 10   FDE index obtained from the comparison between numerical and experimental shear force evolutions: (a) uniaxial tests;    
               (b) biaxial tests – strong direction (X); (c) biaxial tests – weak direction (Y)

energy dissipation for lower deformations associated 
with a quasi-linear numerical response in this stage.

• For each studied column under biaxial loading 
conditions, similar ratios were obtained with the three 
modelling strategies. However, for the weak direction, 
the model with distributed plasticity with a force-
based formulation presents higher differences in the 
total energy dissipated. Comparing the sum of the 
total energy dissipated in both directions, the lumped 
plasticity modelling strategy presents larger deviations.

5   Conclusions

In this study, the adequacy of three modelling 
strategies in the representation of RC columns’ 
responses under uniaxial and biaxial loading conditions 
was analyzed.

From the analysis of the obtained results, similar 
levels of adequacy were verifi ed using the distributed 
inelasticity (force and displacement formulations) and 
the lumped plasticity modelling strategies. However, 

based on the comparisons made, the following 
conclusions can be drawn:

• The initial stiffness obtained with all the 
modelling strategies for the simulation of the biaxial 
tests presents differences, when compared with the 
experimental values, in the range of 25% to 50%.

• The secant stiffness evolution of the columns 
was accurately represented with all modelling strategies. 
However, considerable differences were observed 
between the numerical and experimental tangent 
stiffness evolutions, mainly for the lower drift demands 
and in the last phase of the columns’ responses. This 
aspect confi rms the diffi culties normally found in 
numerically representing the response of columns with 
models based on incremental procedures, which depend 
on the tangent stiffness.

• The cyclic response obtained with the three 
modelling strategies for all columns was found 
to be satisfactory, but diffi culties were found in 
capturing the strength degradation for the higher 
drift demands. Also, the majority of the models show 
limitations in representing the pinching effect in the
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unloading-reloading stage.
• All modelling strategies exhibit diffi culties in 

the representation of the energy dissipation evolution. 
The difference in the total dissipated energy was found 
to range between 25% and 50%. The main differences 
correspond to an underestimation of the dissipated 
energy for lower drift demands associated with a quasi-
linear numerical response and to an overestimation for 
higher demands associated with the limitations of the 
numerical models in the representation of the strength 
degradation and pinching effect.

Finally, it is worth emphasizing that many questions 
are still open in the modelling of the biaxial response 
of RC columns. The modelling strategies analyzed in 
this paper can accurately predict the cyclic response 
of the columns until the strength degradation begins. 
This aspect is not so relevant for uniaxial loading, since 
strength degradation starts for larger drift demands in 
comparison with biaxial loadings.

RC structural models should be further developed 
for a more rigorous consideration of the steel reinforcing 
bars’ behavior for larger drift demands, in order to 
accurately represent the bar buckling, which will 

improve the simulation of strength degradation. Some 
proposals are listed in the References, but these models 
depend on parameters for which a precise calibration 
should be developed.

All modelling strategies studied show similar 
deviations to the response of the columns obtained 
in the experimental tests. This points towards the 
use of a lumped plasticity modelling strategy for the 
representation of RC elements, since the strategy is 
simple and the element discretization is only dependent 
on the plastic hinge length, which has a direct physical 
interpretation. Furthermore, in applications for the 
analysis of complex RC building structures, the lumped 
plasticity modelling strategies lead to more reduced 
computational time and the analysis is concentrated on 
the critical sections in the element.
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Fig. 11  Evolution of the cumulative dissipated energy for columns PB01-N1, PB02-N6, PB12-N7, and PB12-N12: Experimental 
                and numerical results
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Fig.12   Ratio between the total dissipated energy obtained with the numerical models and the experimental value: (a) uniaxial 
              tests; (b) biaxial tests – total (X + Y); (c) biaxial tests – strong direction (X); (d) biaxial tests – weak direction (Y)
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