
Finite Element Modelling of Viscoelastic Core Sandwich Panels

R. A. Moreira1, J. D. Rodrigues2

Summary

Thin layers of viscoelastic materials are often used in the core of sandwich plates or
in surface constrained damping treatments as an effective way to reduce dynamic response
of light structures. However the usual approach to model these structures, using a layered
scheme of plate and brick finite elements, demands a cumbersome spatial modelling task.
In this work a layerwise-based facet-shell finite element model is proposed which is able
to describe accurately the stiffness, damping and mass of the composite plate. Some fi-
nite element remedies are applied in the finite element formulation in order to improve its
membrane formulation, avoid shear locking and introduce the drilling degrees of freedom.
Experimental results obtained on several sandwich plates with viscoelastic layers are used
to validate the applicability of the proposed model for the simulation of sandwich plates
with a single or multiple viscoelastic cores.

Introduction

Viscoelastic layers are usually applied in the core of sandwich panels and as the dis-
sipative layer of constrained damping treatments (Figure 1) as an efective way to improve
the dynamic response of light and thin structures [1,2].These structures, usually applied on
spacecraft and aeronautical assemblies, are very sensitive to cycling or random loading,
which promote high levels of mechanical vibration, noise and fatigue failure, leading to
structural disturbance and premature failure.
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Figure 1: Sandwich plate and constrained viscoelastic treatment
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The viscoelastic materials can provide a very effective vibration energy dissipative mecha-
nism due to the high level of thermal energy that is developed, and partially dissipated, in
the viscoelastic layer as a result of the polymeric molecular chain reaction to the imposed
cycling deformation.
Though its mechanical performance, low cost and damping efficiency, structures with inte-
grated viscoelastic layers demand a special and complex simulation task in order to prop-
erly determine the treatment parameters, like material type, thicknesses, number of layers,
location and treatment coverage. The classical laminate theory cannot be used to simulate
properly these structures since it is unable to describe accurately the high shear deforma-
tion that is developed inside the viscoelastic layers, promoted by the constraining effect of
the outside skins or the constraining layer [3].
The usual approach applies a layered scheme of plate and brick finite elements, using a
solid brick finite element to model the viscoelastic layer [4-6].This modelling approach
can provide a simple and reliable way to simulate the high shear deformation pattern that
is developed in the viscoelastic layers of the sandwich structures using the finite element
method. However, it demands a cumbersome spatial modelling task, which must be recre-
ated to account for any thickness change, that is not recommended to model multiple layer
sandwich panels, using more than one viscoelastic core, and requires special care when
simulating non planar structures.
To overcome the layered modelling scheme limitations a layerwise finite element model
is proposed which proved to provide results similar to those obtained using the layered
approach. With this new model the sandwich plate is spatially modelled by 4-node planar
finite elements, using a conventional plate or shell mesh generator, while the layers pa-
rameters, namely its thickness and material properties, are simply described in a numerical
table that is directly used in the finite element routine. Thus, the redefinition of treatment
configuration, i.e. the number of layers, the layering order, thickness of each layer and
material properties, is easily allowed by simple redefinition of the input data file.

Layerwise formulation

The layered plate or shell is composed by several different layers of different materials
(Figure 2), where each one is individually treated as a thick plate, following the Reissner-
Mindlin assumptions, to which are imposed continuity equations within the respective dis-
placement field at interface level.
In all the layers are imposed the following assumptions:

• extensional and shear deformations of all the layers are accounted;

• deformation through thickness is negligible;

• translational and rotary inertias of all the layers are accounted;

• linear theories of elasticity and viscoelasticity are used;

• materials are isotropic and homogeneous in each layer.
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Figure 2: Layerwise theory - kinematic model

Displacement field

Considering that a generic layerk of the sandwich plate is defined by:

Ωk = {(x,y,zk) ∈ R3 | zk ∈
[
−hk

2
,
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]
,(x,y) ∈ A⊂ R2} (1)

whereΩk, A andhk represent, respectively, the volume, area and thickness of the generic
k-th layer, the displacement field{u}k can be defined as:
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whereu0, v0 andw0 are the translations of the reference layer (k = 1) andβx
k, βy

k are the
rotations of the normal about they andx axes, respectively.
The continuity of the displacement field between the layers is guaranteed through a set of
coupling terms in the displacement field definition.
According to Equation (2) the displacement field,{u}k, can be represented through the set
of generalized variables as:

{u}k = [N ]k{d} (3)
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represents the generalized displacement field and matrix[N ]k is defined as:
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Stiffness and mass matrices formulation

The stiffness matrix of a finite element is computed from:

[K]e =
n

∑
k=1

∫

Ωe
k

[B]ek
T [D]k[B]ekdΩe

k (6)

where matrix[D]k, which is based on the Mindlin plate elasticity matrix [7], represents the
constitutive matrix of the generick-th layer. The deformation matrix[B]k is evaluated from:

[B]ek = [L ][N ]k[N]e (7)

Matrix [N]e represents the shape functions matrix of the finite element and matrix
[L ] represents the differential operator matrix that relates the deformation field with the
corresponding displacement field.
The mass matrix of the composite finite element is given by:

[M]e =
n

∑
k=1

∫

Ωe
k

[N]eT [J]k[N]edΩe
k (8)

where the matrix[J]k represents the inertia matrix of each generic layer and is obtained
from:

[J]k = ρk[N ]k
T [N ]k (9)

Layerwise formulation improvement

The stiffness matrix formulation is improved by three different finite element reme-
dies. Firstly the membrane displacement field is enriched by a set of incompatible modes
[8] which provide a good remedy for in-plane shear locking of the bilinear quadrilateral
element.The correction issued by Tayloret al. [9] is applied to this membrane formulation



improvement.
In order to provide transverse shear locking protection for thin layer condition, while main-
taining the proper rank of the quadrilateral finite element, the thick plate formulation of
each layer is enriched with a locking protection based on theMITC approach [10].
Finally, the drilling degrees of freedomθz

k are introduced in the membrane formulation
of the plate using a fictitious stiffness stabilization matrix [11]. This remedy provides a
generalization of the plate formulation for facet-shell application which suffer from rank
deficiency and ill-conditioning problems when adjacent elements are coplanar.
The consistent mass matrix provided by Equation (8) can be converted into a lumped or
diagonal mass matrix, which is usually applied on dynamic analysis mainly due to its
computational economy. However, in the layerwise model special care must be issued
when selecting the proper lumping procedure due to the effect of the coupling terms, be-
ing impossible to apply the nodal quadrature usingLobattointegration technique [7] or the
” row-sum” technique [7]. The ”HRZ” procedure [12], which is based on a diagonal-scaling
technique, is efficiently applied in the proposed finite element.

Experimental validation

The applicability of the proposed layerwise finite element to the simulation of the
dynamic response of sandwich plates with soft viscoelastic cores is assessed by comparing
the numerical results achieved with this finite element and the experimental data obtained
for several specimens with viscoelastic layers [6].
The numerical simulation is developed using a direct frequency analysis [6] along with the
complex modulus approach [5,6] in order to account for the frequency-dependent shear
modulus of the viscoelastic layers.
Figure 3 represents the direct frequency response function, measured and simulated, of a
300x200 mm sandwich plate made of two aluminium plates, with 1mm of thickness each,
bonded together with a thin (0.125 mm) 3M ISD112 [13] viscoelastic layer.
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Figure 3: Direct frequency response function—experimental vs. numerical



Conclusion

The proposed finite element reveals to be suitable to model viscoelastic core sandwich
panels and permits to avoid the laborious modelling task when using the layered models.
The frequency response functions obtained with the proposed finite element model agree
well with the experimental ones for the magnitude and phase.
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