A step up with the HARVARD system:
the HARVARD-g system

Ruy Ramos and Rui Camacho

LIACC, Rua de Ceuta 118 - 6° 4050-190 Porto, Portugal,
FEUP, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
{ruyramos,rcamacho}@fe.up.pt
http://www.fe.up.pt/~ruyramos
http://www.fe.up.pt/~rcamacho

Abstract. The HARVARD system is a general purpose system adequate
for Knowledge Discover in Databases (KDD) running in general purpose
PCs and based on distributed computing over a connected network of
PCs.

In this paper we discuss the extension of HARVARD to interact with
a Grid Computing setting. This extension, called HARVARD-g, enable
the HARVARD system to schedule task to the Grid and therefore largely
increase its available computational power.

keywords: Grid Computing, Parallel and Distributed Computing.

1 Introduction

The discipline of Knowledge Discovery is Databases (KDD) is a valuable set
of techniques to extract valuable information from large amounts of data (data
ware houses). Another promising research direction is Distributed and Parallel
Data Mining[3]. This new area addresses the problem of analysing distributed
databases and/or making the analysis in a distributed computing setting.

The HARVARD system (HARVesting Architecture of idle machines foR
Data mining) has been developed as a computational distributed system capable
of extracting knowledge from (very) large amounts of data using techniques of
Data Mining (DM) namely Machine Learning (ML) algorithms. The HARVARD
system envisages the following objectives. Allow the use of common personal
computers in the data analysis process. In the line of Condor[4] system uses only
idle resources in the organisation. The system runs on a large variety of platforms
(Windows and Linux at least) and uses parallel and distributed computation.
The system is independent of the data analysis (ML) tool. It has facilities to
monitor the KDD process and facilities to recover from major system faults.

Since the analysis of large amounts of data require considerable computa-
tional power we have extended the HARVARD system with the possibility to
interact with a Grid computing tool and be able submit some of its tasks to the
grid. This new capability may substantially increase the computational power



available to Data Mining tasks with the HARVARD system.

The rest of the paper is organised as follows. In the Section 2 we present the
HARVARD system. We present the grid facilities features of HARVARD-g in
Section 3. The deployment of the HARVARD-g system is described in Section 4.
We conclude in Section 5.

2 The HARVARD system

The distributed architecture of the HARVARD system is composed of a Master
node and a set of computing nodes called Client (or Slave) nodes. A detailed
description of the system may be found in [1]. The Master node is responsible
for the control and scheduling the sub-tasks of the whole KDD process. Each
Slave node executes application (sub-)tasks assigned by the Master node. Each
node is composed by four modules that execute specific tasks to make the overall
system working. In what follows we refer to Figure 1 for the modular structure
of both the Master and the Slave nodes.

The Master node is responsible for reading the KDD process specification
and executing it. Each task is of the KDD process is handle by the system as a
Working Unit (WU). Each WU will be assigned to a one or more machines.
The assignment of a WU to more than one machine makes the the system more
tolerant to faults. It occurs when there are idle machines available and the task
is expected to have long running times. There are other fault tolerant features
that we will refer bellow. When a WU finishes the results is associated with
that WU and the status of the workflow graph updated. When the graph is
completely traversed, meaning that the KDD process has finished, the result is
returned to the user. As seen in Figure 1 the basic Master node is composed by
four modules: the Task manager; the Scheduler; the Resource Manager and; the
Communications module.

A Slave node does the actual data analysis work by running the Data Ming
tool. In order to have a distributed system that is independent of the Data
Mining tool the DM tool is involved in a wrapper that directly controls the DM
tool. Each Slave also reports periodically its workload to the Resource Manager
module of the Master. It is through the Slave’s Communications module that the
Slave downloads the DM tool and the data to be processed, and stores the results
of the local analysis. Each Slave has four modules: the Workload Monitoring;
the Worker ; the Application Wrapper and; the Communications module.

3 Grid Computing facilities in HARVARD-g

The HARVARD-g system, as seen in Figure 1, includes a connection to a grid en-
vironment. The grid connection largely extends the computational power avail-
able to the HARVARD system by using the computational resources in the
grid it is connected. In this case, the Globus Toolkit 4.0 (GT4) has avail-
able tools that facilitate its interconnection with heterogeneous environments



designated by Commodity Grid (CoG) kit. The Java CoG kit jGlobus mod-
ule provides the basic API to the Grid to allow access to remote data access
(gridFTP servers), remote job submission and monitoring (GRAM services),
and a complete implementation of GSI (security). It also includes the myProxy
client libraries (certificate store). The Java CoG kit provides a mapping be-
tween Java and the Globus Toolkit that produces core Java non-WS runtime
and security. Since HARVARD-g is encoded in Java we developed an extra mod-
ule in Java at the Master node, called Grid Connection, and used the jGlobus
API [5]. This new module makes the syntax and semantic interfacing of a task
originally encoded to run within the basic HARVARD system with the restric-
tions of a job submission task to grid environment. Then some tasks are imple-
mented like (a) authentication to use resources of grid environment using Classes
org.globus.myproxy and org.globus.gsi, (b) specifications of the resources to be
used ("stdin”, "stdout”, ”stderr”, executable programs/applications and work-
ing directory) using Class org.globus.rsl, (c) files transfer of necessary data and
programs/applications using Class org.globus.ftp, and (d) the submission of the
job using Class org.globus.gram. When finished, returns a status to Scheduler
module. The Grid Connection module uses the x.509 certificate of the user to
submit jobs to the grid.

- -
r Hﬁwgd g 7777777777777777 //" anvironment

Master

‘ Task

Rie oo ‘ ‘ Scheduler

Grid
Cannection

JGlobus.
Comir

Resource
Manager

I 1

| Slave 1 Slave n

‘ Wark Application Wark Application ‘
Loading Wrapper Leading Wrapper |

‘ Worker Communication - Worker Communication |

\

Fig. 1. The Harvard-g System

Assuming that the grid environment accepts jobs with programs running in
Java the HARVARD-g system uses libraries of algorithms previously encoded in
Java (jar files). As an examples we may use algorithms from Weka [2] or Yale [6].
In this way the chosen algorithm of the KDD task will be directly exported and
executed in a Globus environment. This is done in a user transparent fashion.
The only requirement is that the user must have a x.509 certificate valid and
acceptable by the Grid Computing environment connected to Harvard-g.



4 Deployment of the HARVARD-g system

Just to test the feasibility of our approach and not to compare the systems
performance on a specific problem we produced a large artificial data set with
realistic information. The data set is on the domain of credit scoring. We char-
acterised each instance with 55 attributes that correspond to the 55 fields of an
actual form used by a real bank. The data set has 80 million registers and was
stored in several MySQL databases in separate machines. We used a laboratory
with 15 PCs where Master students have classes and use for developing their
practical works. It took several hours to analyse the data set using the original
HARVARD system with IndLog|[7]. We are now assessing the time reduction that
HARVARD-g will achieve by using the University GRID computing environment
that has 48 machines spread over three geographically distributed sites.

5 Conclusions

We have proposed an architecture for Distributed Knowledge Discovery in Databases
that is capable of using different Data Analysis tools without any modification.
The architecture enables the use of general purpose desktop computers that are
idle in an organisation. We have deployed the architecture in the HARVARD-g
system and tested on a Relational Data Mining task. The interconnection with a
grid computing environment largely extends the computational power available
for the KDD process.

References

1. Ruy Ramos and Rui Camacho A commodity platform for Distributed Data Mining
— the HARVARD System, 6th Industrial Conference on Data Mining (ICDM 2006)
July 14-15, 2006, Leipzig/Germany

2. J. Han and M. Kamber Data Mining: Concepts and Techniques. Morgan-Kaufmann
Publishers, 2001

3. Kargupta,H. and Chan, P., Advances in Distributed and Parallel Knowledge Dis-
covery. AAAT/MIT Press, 2000

4. M. J. Litzkow and M. Livny and M. W. Mutka, Condor—A Hunter of Idle Worksta-
tions, Proceedings of the 8th International Conference on Distributed Computing
Systems, pp 104-11, 1988

5. Gregor von Laszewski and Ian T. Foster and Jarek Gawor and Peter Lane, A Java
commodity grid kit., Concurrency and Computation: Practice and Experience, vol.
13, N. 89, pp 645-662, 2001

6. Ingo Mierswa and Michael Wurst and Ralf Klinkenberg and Martin Scholz and
Timm Euler, YALE: rapid prototyping for complexr data mining tasks, KDD ’06:
Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp 935-940, 2006

7. Rui Camacho, IndLog —Induction in Logic, JELIA 2004 - 9th European Conference
on Logics in Artificial Intelligence, LNAI 3229, pp 718-721, 2004



