

AA TTOOOOLL FFOORR FFAASSTT DDEEVVEELLOOPPMMEENNTT OOFF MMOODDUULLAARR AANNDD HHIIEERRAARRCCHHIICC

NNEEUURRAALL NNEETTWWOORRKK--BBAASSEEDD SSYYSSTTEEMMSS

Francisco Reinaldo
LIACC, Faculty of

Engineering, University
of Porto, Portugal

E-mail: reifeup@fe.up.pt

Mauro Roisenberg
L3C, Department of
Computer Science,

Federal University of
Santa Catarina, Brazil

Jorge Muniz Barreto
L3C, Department of
Computer Science,

Federal University of
Santa Catarina, Brazil

Rui Camacho
LIACC, Faculty of

Engineering, University
of Porto, Portugal

Luis Paulo Reis
LIACC, Faculty of

Engineering, University
of Porto, Portugal

KEYWORDS: Agent, Behaviour, Architecture,
PyramidNet

ABSTRACT

This paper presents the PyramidNet Tool as a fast and
easy way to develop Modular and Hierarchic Neural
Network-based Systems. This tool facilitates the fast
emergence of autonomous behaviours in agents because it
uses a hierarchic and modular control methodology of
heterogeneous learning modules: the pyramid. Using the
graphical resources of PyramidNet the user is able to
specify a behaviour system even having little
understanding of artificial neural networks. Experimental
tests have shown that a very significant speedup is attained
in the development of modular and hierarchic neural
network-based systems when using this tool.

1. INTRODUCTION

Cognitive processes are necessary to reach autonomous
behaviour. A cognitive process is a decision-making route
of beliefs or desires that triggers actions for emerging
behaviours. In order to be autonomous, an agent has to
include processes like representation, manipulation,
combination and modification of behaviours. Other
processes like perception, learning, deduction and
planning are important as well (Wooldridge and Jennings
1994).

This paper presents the PyramidNet Tool (Reinaldo

2003) as a fast and easy way to develop a modular and
hierarchic neural network-based system. Inspirited in
PyramidNet Architecture (Roisenberg, Barreto et al. 2004),
the user can interact with the Tool and create different
projects using Artificial Neural Networks (ANN).

The paper is divided in six sections. Section 2

introduces the PyramidNet Architecture and features.
Section 3 introduces the PyramidNet Framework and sub-
frameworks. Section 4 presents the PyramidNet Tool and
features. Section 5 presents an experiment and discusses
the results. In Section 6, we draw some conclusions.

2. PYRAMIDNET ARCHITECTURE

The PyramidNet Architecture (Roisenberg, Barreto et
al. 2004) uses a modular and hierarchical approach of
ANNs to emerge reasoning to produce behaviours in
agents, as shown in Figure 1. The use of ANNs represents
many advantages over other proposed control architectures
because it supports high noise immunity, fault tolerance
and programming by examples.

Figure 1: PyramidNet Architecture

The structure of the pyramid is arranged to provide a

fast emergence of highly flexible behaviours. The
hierarchic structure is used to separate levels of complexity
into incremental functionality. It is composed by multiple
levels of function. These levels/layers of function represent
subsequent clusters of ANN arranged in a hierarchical
way, allowing increasingly behaviours like a cortex
(neocortex) (Kolb and Whishaw 2005). The base of the
pyramid runs reactions (real-time activities), exploring the
straightforward performance in the effector level, and the
top of the pyramid has responsibility for producing of inner
representations (cognitive reasoning), more elaborated
behaviours for controlling the reactive levels. Therefore,
layers and learning modules communicate through
interconnections.

3. PYRAMIDNET FRAMEWORK

PyramidNet Framework (Reinaldo 2003) is an open-
source C++ platform that offers a robust group of reusable
objects/classes for developing future flexible and extensible
ANN tools. The main objective is to develop and
standardize a fast reliable procedure for tools that support

the layered organization of learning modules. The
framework enables the construction of a tool through
union/extension of classes and communication between
objects to create solutions to similar problems (Wirfs-
Brock and Johson 1990).

The framework has three main sub frameworks, which
are the Graphic User Interface Framework (GUIF), the
Artificial Neural Networks Framework (ANNF) and the
Automatic Open-Source Code Generator Framework
(ACF). GUIF is a set of main classes for handling and
modelling learning processes, using graphic elements that
will interact with users. It makes some items available:
desktop constructor, sensor, actuator, line links, skins of
ANN, scheduler of ANN training, menus, dialog box and
others. ANNF offers classes of learning modules. Each
ANN class is composed of algorithms, layers, neurons and
its respective particularities still to be worked. In addition,
it is implemented to be extensible for receiving more
classes. ACF offers a set of classes able to interpret the
drawn project. Besides, it can be extended to generate an
automatic open-source code of a program.

4. PYRAMIDNET TOOL

PyramidNet Tool (Reinaldo 2003) is a utility that helps
students/users to develop Modular and Hierarchic Neural
Network-Based Systems. The Tool addresses Artificial
Intelligence, Psychology and Robotics areas. The Tool
machinery was built over some classes of PyramidNet
Framework because they maintain standard and
collaborative tasks.

PyramidNet Tool provides three ANN learning

modules that are Feedforward networks (Fine 1999),
Recurrent networks (Mandic, Chambers et al. 2001) and
SOM – Kohonen’s maps (Kohonen 2001). These modules
can reach the behaviour levels in order: Stereotyped
(reflexive and taxies), Reactive and Deliberative. Anything
less is like developing behaviours to an agent but letting
fine movements and elaborated decisions without being
used. The Tool permits users to make several tests using
one isolated type or several heterogeneous ANN in
communication. The features of the Tool include many
aspects. The first of these is the fact of enabling users to
design and implement new behaviours so that agents run
in dynamic environment, using simple objects in a graphic
environment as well as minimum knowledge of
programming language. These functionalities enable the
simplest, lightest and fastest way to produce behaviour
projects to agents. Other feature is the ability to manipulate
models because humans are good at using diagrams, and it
is not necessary to adopt new practices to use the tool.
There are parameters to be set, and the level of description
is clean. The most important feature of the tool is the
ability to train several learning modules using information
from sensors and/or other learning modules making an
array of learning modules for the present tool's process.
Taking specific input data and producing specific output
data in a flows that define the sequential interrelation
between activities and can be specified with either linear or
branched connections. Another useful feature is the ability

to produce a clean and ready-to-use ANSI C open-source
for information fusion, planning and coordination with a
few mouse clicks. By using a high-performance
interpretation algorithm, a functional and compact core is
created from drawn project. This allows the .cpp code to be
changed easily. Other features are things like customizable
interfaces, a system allowing integration of other projects
that may assist customer support in helping the consumers.
All these features of the PyramidNet Tool has been used as
curricular component on the master degree course of
computer science in the Federal University of Santa
Catarina (UFSC) – Brazil -, and Laboratory of
Connectionism and Cognitive Computing (L3C) – Brazil.

The open-source PyramidNet Tool can be fully

downloaded at (Reinaldo). More details about the
development of the Tool can be seen in (Reinaldo;
Reinaldo 2003). The next section presents an experiment
which was created by using PyramidNet Tool.

5. EXPERIMENT: “CONTAINER CAPTURER”

The first experiment takes place into a rectangular
arena with a white surface bounded by a black ribbon. The
arena has several containers that can be moving. Each
container has a particular colour. The intention of the
agent is to remove green containers out of the arena. The
background knowledge of the agent is to recognize a
container, a green colour and a black ribbon. The actions
of the agent are walking inside of the arena, searching for
containers, identifying and removing green containers. The
motivation of the agent is to continuously remove green
containers if it founds different objects. The arena has
unpredicted events; and thus: there are some containers
moving to different positions on the bounded arena; room
light (brightness) may be changed; containers can be
horizontal or vertical; and states and objects that are not
containers can be used to confuse the agent.

We chose a Lego MindStorm robot (Lego 2002)

because it has all sensors and actuators needed to run this
experiment. Its body has two traction motors for moving
inside the arena, one pressure sensor for sensing containers
and two light sensors to detect containers and the black
ribbon. Next step, we draw the diagram with actions to be
executed by the Lego robot, as seen in Figure 2. The lower
layer performs basic tasks, such as backward movement,
looking around and forward movement. The upper layer
performs laboured decisions about continuously searching
for containers, retreating for wrong containers and pushing
the specified container out of the arena. Based on Figure 2,
the PyramidNet Tool was used to design an ANS project
that is shown in Figure 3. ANS project has four learning
modules, three sensors, two actuators and respective
interconnections.

Figure 2: Behaviour Task Plan Diagram

Figure 3: ANS Project

The first learning module, Stereotyped Network, uses

FeedFoward with Backpropagation algorithm for reflexive
behaviours. It receives signals from sensors and sends data
to the second layer. It receives signals from three sensors:
two infrared sensors and one touch sensor. The first sensor,
infrared, recognizes the container and colour. The second
sensor, touch, uses pressure to detect a container and to
control the velocity of access. The third sensor, infrared,
detects the black ribbon on the floor. The second learning
module, Reasoning Net, uses Recurrent networks to make
reasoning decisions about detected events in the first layer
and transmit to them to the first layer overlapping it. In
this case, decisions consist of walking on, retreating on and
pushing the green container out of the arena. The third
learning module, Temporizer Net, uses Feedfoward ANN
to simulate a simple temporizer that triggers turn around
movements and back in the first layer when a black ribbon
is detected. Finally, the fourth learning module,
ControlMotor Net, uses Feedfoward ANN to control the
tracking motors for obeying the orders that come from the
superior layer. Concluding, a source-code was
automatically produced to be applied to the robot. Figure 4
shows the Lego robot selecting a green container and
moving it out of the arena.

Figure 4 Lego Arena

This experiment has demonstrated the use of
PyramidNet Tool for fast and easy development of
applicable ANS. The Lego robot acquired a high degree of
reasoning to accomplish goals, test adaptation and ability
to deal with unpredictable situations and efficiency in
movements.

6. CONCLUSIONS

This paper presented a tool for building Autonomous
behaviours in Agents using neural networks as the base to
accomplish the reasoning process. The proposed tool –
PyramidNet Tool - may be easily used in institutional
education because it is focused on common users, without
professional knowledge on neural networks and a short
agent development time.

The main strengths of PyramidNet Tool are concerned

with its graphic design capabilities (including graphical
simulation among heterogeneous artificial neural network,
sensors and actuators), generation of ready-to-use open-
source code and support of several well-known ANN
models - Backpropagation for Feedforward networks,
Recurrent networks and SOM – Kohonen’s maps.

REFERENCES

Fine, T. L. (1999). Feedforward Neural Network Methodology.

Calcuta, Springer.
Kohonen, T. (2001). Self-Organizing Maps. Berlin, Springer.
Kolb, B. and I. Q. Whishaw (2005). An Introduction to Brain and

Behavior. New York, Worth Publishers Inc.
Lego (2002). Lego MindStorm Hitachi H8: 3804 Robotic

Invention System 2.0, http://mindstorms.lego.com/.
Mandic, D., J. Chambers, et al. (2001). Recurrent Neural

Networks for Prediction: Learning Algorithms, Architectures
and Stability. NY, John Wiley & Sons.

Reinaldo, F. A. F. PyramidNet Tool Project,
http://www.inf.ufsc.br/~rei.

Reinaldo, F. A. F. (2003). Projecting a framework and
programming a system for development of modular and
heterogeneous artificial neural networks. Dept. of Computer
Science. Florianópolis, Federal Univ. of Santa Catarina: 86.

Roisenberg, M., J. M. Barreto, et al. (2004). PyramidNet: A
Modular and Hierarchical Neural Network Architecture for
Behavior Based Robotics. International Symposium on
Robotics and Automation - ISRA 2004, Querétaro, México,
IEEE.

Wirfs-Brock, R. and R. E. Johson (1990). Surveying current
research in object-oriented design. New York,
Communications of the ACM.

Wooldridge, M. J. and N. R. Jennings (1994). Agent Theories,
Architectures, and Languages: A Survey. Workshop on
Agent Theories, Architectures and Languages, 11th European
Conference on Artificial Intelligence, Amsterdam, The
Netherlands.

