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ABSTRACT
The flow around single Taylor bubbles rising in non-Newtonian solutions of Carboxymethylcellulose (CMC) polymer was studied
using a simultaneous technique employing particle image velocimetry (PIV) and shadowgraphy. This technique solved previous
problems on finding the correct position of the bubble interface. Solutions of different polymer weight percentage, varying from
0.1 to 1.0 wt% were used to cover a wide range of flow regimes. The rheological fluid properties and pipe dimension yielded
Reynolds numbers between 4 and 254 and Deborah numbers between 0.012 and 0.402. The shape of the bubbles in the different
fluids was compared. The flow around the nose of the bubbles was found to be similar in all the studied conditions. Velocity
profiles in the liquid film around the bubble were measured. Different wake structures were found in the different solutions
studied. With increasing viscosity, the wake flow varied from turbulent to laminar, being possible to observe a negative wake for
the higher polymer concentration solutions. A comparison between the different wake structures was made.

1 INTRODUCTION

Slug flow is a two-phase flow regime found when a gas and
a liquid flow simultaneously in a pipe over certain flow rates.
It is characterized by elongated gas bubbles (Taylor bubbles or
slugs) almost filling the pipe cross section and liquid flowing
around and between the bubbles. This flow pattern is found
in several industrial processes as is the case of geothermal, oil
and gas wells, fermentation, polymer devolatilization and air-
lift reactors among others. In some chemical processes, slug
flow is induced to increase the reaction rate due to the mixing
created mainly in the wake of the Taylor bubbles.

The velocity of the bubble depends among other things, in
the velocity of the liquid ahead of it [1]. When two bubbles
flow together in a pipe, the wake of the leading one can influ-
ence the velocity of the following, if the distance between them
is smaller than the minimum stable length [2]. In this case, two
bubbles can merge together (coalescence) forming a larger bub-
ble and reducing the number of mixing zones and therefore the
process efficiency. Coalescence is therefore a problem to avoid
and the minimum stable distance between two consecutive bub-
bles is essentially dependent on the flow in the wake of the pre-
ceding bubble.

With newtonian fluids, among other studies, Campos and
Guedes de Carvalho [3] studied wake structure for different liq-
uid flow regimes. Pinto and Campos [4] studied the interac-
tion between two consecutive bubbles and established minimum
stable lengths for different operation conditions. PIV measure-
ments were made to characterize the flow field around individ-
ual Taylor bubbles in newtonian fluids [5, 6, 7, 8].

The study of Taylor bubbles rising in non-Newtonian liquids
is still scarce, although they are found frequently in industry.
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Due to the complex liquid rheology, the gas-liquid flow pat-
terns have completely different characteristics, and by conse-
quence different bubble interaction behavior. Therefore, there
is a need for extending the slug flow research towards non-
Newtonian liquids. Some studies have been made with small
bubbles in non-Newtonian liquids. Bubble velocities and shapes
in non-Newtonian liquids have been studied by different authors
[9, 10, 11]. Hassager [12] described, for the first time, a negative
wake behind unconfined small bubbles rising in non-Newtonian
liquids. Bubbles coalescence studies in non-Newtonian liquids
can be found in [13, 14, 15]. Funfschilling and Li [16] used
PIV and birefringence visualization to study the flow of non-
Newtonian fluids around small bubbles.

Concerning the flow of Taylor bubbles in non-Newtonian flu-
ids, the effects of power law rheology and pipe inclination on
slug bubble rise velocity were studied by Carew et al. [17]. Ot-
ten and Fayed [18] studied the pressure drop and friction drag
reduction in two-phase non-Newtonian slug flow. Rosehart et
al. [19] measured the void fraction, slug velocity and frequency
for co current slug flow of air bubbles in highly viscous non-
Newtonian fluids. Terasaka and Tsuge [20] performed gas hold-
up measurements for slug bubbles rising in viscous liquids hav-
ing a yield stress.

In the present work, the flow around single Taylor bubbles
rising in non-Newtonian Carboxymethylcellulose solutions is
studied, using PIV and shadowgraphy simultaneously. The re-
sults obtained contribute for a better understanding of the non-
Newtonian behavior and the bubble coalescence mechanism.



2 EXPERIMENTS

2.1 Experimental Techniques

The flow field around the Taylor bubbles rising in stagnant
liquid was obtained applying PIV simultaneously with shad-
owgraphy. This technique was first presented by Lindken and
Merzkirch [21] for bubbly flow and Nogueira et al. [22] adapted
it for slug flow. The technique is fully described in [22, 23] and
consists in placing a board of light emitting diodes (LEDs) be-
hind the test section pulsing simultaneously with the laser, so
that the CCD camera, acquires an image containing both the
PIV particles and the shadow of the bubble. Two lenses of
35 mm and 50 mm of focal length was used to obtain the flow
field in the nose/wake region and to obtain a close view of the
liquid film around the bubble. The LEDs board is composed
by 350 LEDs. Fluorescent particles (an orange vinyl pigment,
10 µm of mean size) were used as seeding and emitted light at
590 nm. A Nd: YAG laser was used to create a vertical laser
sheet of about 1 mm thickness containing the axis of the column.
The laser, the camera and the LED’s board were all triggered by
the same signal generator which makes possible to obtain the
PIV images and the bubble shadow in the same frame.

Two laser diodes were placed at a fixed distance in the col-
umn pointing through the center into two photocells in the op-
posite side of the column. The signal yielded by the photocell
is proportional to the light received, so when the Taylor bubble
is passing between a laser diode and a photocell, the laser beam
is deflected and the photocell signal drops abruptly. The Taylor
bubble velocity was determined dividing the distance between
the photocells by the time delay between their signals.

2.2 Facility

The present study was made in the experimental setup
schematized in Figure 1 and fully described in [22, 23]. The
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Figure 1. General scheme of the experimental setup and detailed top
view of the test section

facility is mainly composed by an acrylic column of 6 m height
and 0.032 m of internal diameter, open on top to the atmosphere,
two pneumatic valves, two storing tanks and a pump. The test

section was located near the top of the column, to avoid entrance
effects and to assure a stabilized flow. A box with plane faces
surrounding the test section (0.5 m x 0.12 m x 0.11 m) was filled
with the studied liquid in order to minimize the optical distor-
tion. The individual Taylor bubbles were injected at the bottom
of the column, by manipulating valves A and B. The PIV instru-
mentation was basically composed by a PCO (SensiCam) CCD
camera and an acquisition and data processing system. A Nd:
YAG laser with 400 mj of pulse power was used to illuminate
the measured plane. The laser wavelength was 532 nm and the
pulse duration 2.4 ns. A LED array emitting light at 650 nm was
placed behind the test section with a diffuser paper to obtain the
shadow of the Taylor bubble at the same time as the PIV im-
age. A red filter, opaque below 550 nm was placed in front of
the PCO CCD camera to block the intense green reflections of
the laser and to allow the passage of the light emitted by the flu-
orescent particles and by the LEDs. Two thermocouples were
placed below and above the test section to determine the work-
ing temperature and to check a possible temperature gradient
along the column. The fluid rheology was determined in a AR
2000 DTA Instruments Rheometer.

3 DATA PROCESSING

The images acquired with the simultaneous PIV and shad-
owgraphy technique contain both the PIV particles images and
the shadow of the bubble in the same frame. The PIV process-
ing method is fully described by Nogueira et al. [22]. The
flow field was obtained using the cross-correlation algorithm
WIDIM (Window Displacement Iterative Multigrid), developed
by Scarano and Riethmuller [24]. In this work, initial interro-
gation windows had 20 pixels x 40 pixels and after the first vec-
tor estimative, final windows 10 pixels x 20 pixels were used.
An interrogation areas overlap of 50% was used. Spurious vec-
tor identification was used, correcting vectors with a signal to
noise ratio (SNR) less than 1.5 (about 5-7% of the total vec-
tors) with the neighbors average value. The time between PIV
images was adjusted according to the liquid velocity and var-
ied between 1000-2000 µs for the wake and nose regions and
80-400 µs for the liquid film around the bubble. The estimated
uncertainty of the measured liquid velocity is 2%.

With the shadow of the bubble it is possible to identify the
position of the gas-liquid interface and so overcome the prob-
lems described by Nogueira et al. [6] due to the reflection and
refraction of particles images in the interface. The image pro-
cessing for determination of the shadow of the bubble is de-
scribed in previous works [22, 23] and consists of several se-
quencing steps. A median filter is applied to the original image
to eliminate the seeding particles. A background reference im-
age is then subtracted to the filtered image to eliminate the col-
umn and the background and the result is the shadow of the bub-
ble. The process is completed by defining a gray level threshold,
which binaries the image, and by filling the interior of the Tay-
lor bubble. With the bubble shadow, it is then possible to iden-
tify the gas-liquid interface and eliminate the erroneous vectors
inside the Taylor bubble.

4 RESULTS

In this work the flow around Taylor bubbles rising in stag-
nant solutions of Carboxymethylcellulose (molecular mass of
300000 kg kmol−1) with different weight percentages was stud-
ied. In Figure 2 are represented the viscosities of the differ-



ent solutions in function of the shear rate, measured in a AR
2000 DTA Instruments Rheometer. Due to difficulties in direct
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Figure 2. Representation of viscosity in function of the shear rate for
the solutions studied

measurement, the relaxation times of the fluids were approxi-
mated to the fluid characteristic time, λ, of the Carreau simpli-
fied model, Eq. (1), after adjustment to the measured viscosities.

µ = µ0(1+(λ · γ̇)2)
n−1

2 (1)

The experiments were made at ambient temperature. The ex-
perimental conditions are resumed in Table 1. The Reynolds

Table 1. Experimental temperature, bubble velocities and dimension-
less Re and De numbers

wt% T(◦C) Ub(m/s) Re De

0.1 20.3 0.199 254 0.012

0.3 21.5 0.198 76 0.053

0.4 19.0 0.195 44 0.092

0.5 25.0 0.192 29 0.096

0.6 19.0 0.187 18 0.192

0.8 22.0 0.180 8 0.402

1.0 22.0 0.160 4 0.374

number is defined as Re = ρUbD/µb, where µb is the viscosity
of the fluid obtained from the rheological data (figure 2), at a
characteristic bubble shear rate (γ̇b = Ub/D). The velocity field
around the Taylor bubbles and its shape in the different condi-
tions studied are described in the next sections.

4.1 Taylor Bubble Shape

The Taylor bubbles are elongated bubbles characterized by
prolate spheroid leading edge, whose curvature is higher for

higher viscosities. The bubble nose shapes, obtained from the
bubble shadows are represented in Figure 3 for some of the con-
ditions studied, in the format of dimensionless radius (r/D) as a
function of the dimensionless distance to the nose (z/D), where
z is the distance from the nose, being positive downwards.

r/D

z/
D

0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 wt% CMC
0.4 wt% CMC
0.8 wt% CMC
1.0 wt% CMC

Figure 3. Representation of the bubble radius, r/D in function of the
distance to bubble nose, z/D.

The radius of the bubble increases with z/D, until it reaches
a maximum value at a certain distance from the nose. The max-
imum bubble radius in each solution studied are presented in
Table 2.

Table 2. Maximum bubble radius for the different solutions studied

wt% (r/D)max

0.1 0.462

0.3 0.446

0.4 0.435

0.5 0.426

wt% (r/D)max

0.6 0.414

0.8 0.400

1.0 0.360

The bottom of the bubble is where the main differences ap-
pear. Some PIV images of the bottom of the bubble are repre-
sented in Figure 4. For the higher Reynolds number (Figure 4
a, b), the bottom surface is unstable and oscillates as the bub-
ble rises. As the viscosity increases, the trailing edge becomes
stable and with a concave shape (Figure 4 c, d). For the lower
Reynolds numbers (Figure 4 e, f), the trailing edge loses its con-
cavity and gets a lacrimal shape.



Figure 4. Bubble trailing edges images for a)Re=254, b)Re=76,
c)Re=44, d)Re=18, e)Re=8, f)Re=4.

4.2 Flow Field in the Bubble Nose

The flow field around the Taylor bubbles was obtained using
Particle Image Velocimetry. The vector fields represented in the
next sections refer to a vertical plane that passes in the center of
the pipe.

The flow pattern around the nose of the bubbles is similar for
every solution studied, varying only in the velocity magnitudes.
Figure 5 shows the flow field around the nose of a Taylor bubble
rising in a 0.5 wt% CMC solution. The velocity vectors are rel-
ative to a fixed reference frame and the Taylor bubble is moving
upwards. From Figure 5 it is possible to see that as the bubble
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Figure 5. Flow around the nose of the Taylor bubble in 0.5 wt% solution

passes, the liquid in front of the bubble is pushed forward and
away from the center and then starts falling around the bubble
forming a thin liquid film.

In Figure 6 are represented two instantaneous vertical veloc-
ity profiles along z = 0 for the two extreme cases studied. From
Figure 6, it is possible to see that the velocity profiles at z=0 for
the extreme cases are very similar, varying slightly the veloc-
ity magnitude due to the different bubble velocities and shapes.
The velocity profiles correspondent to the other solutions stud-
ied are between these two, so they were not plotted for better
graphic visualization.
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Figure 6. Vertical component of the liquid velocity along z = 0 in 0.1
and 1.0 wt% solutions

4.3 Liquid Film Velocity Profile

The liquid that flows around the bubble nose forms a liquid
falling film between the gas-liquid interface and the pipe wall.
The thickness of the liquid film decreases for higher values of z
according to the bubble radius, until it reaches a minimum thick-
ness, where the liquid velocity profiles are fully developed. In
Figure 7 are represented the average developed liquid velocity
profiles for the conditions studied. From the plots in Figure 7
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Figure 7. Average of the vertical component of the velocity in the liquid
falling film in the different studied conditions

it is possible to see that the liquid film thickness is higher for
higher Re numbers. For the lowest viscosities, due to the thinner
liquid film, the liquid velocity increases significantly, reaching
up to 7 times the bubble velocity.



4.4 Taylor Bubble Wake

The Taylor bubble wake is the region where the main differ-
ences appear in the flow pattern of the studied cases. For the
higher values of Re, the liquid film velocity is higher and due
to the low viscosity, the annular jet that falls behind the bubble
causes a highly turbulent flow in the wake, responsible for the
instability of the bubble trailing edge. The wake instability oc-
curs for values of Reynolds higher than 44 and is characterized
by oscillations of the bubble trailing edge which cause changes
in time on the wake flow field. Figure 8 shows an instantaneous
velocity field, relative to a fixed reference frame, in the wake of
a Taylor bubble rising in a 0.1 wt% solution (Re = 254), where
the variable z∗ is the vertical distance to the center of the trailing
edge of the bubble. From Figure 8 it is possible to identify some
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Figure 8. Instantaneous velocity field in the wake of a Taylor bubble
rising in a 0.1 wt% solution

small vortices in the wake of the bubble. It should be noticed
that the velocity field is obtained from a vertical plane in the
center of the column and due to the high turbulent flow in this
case, there is a lot of liquid movement in the plane perpendicu-
lar to the measurement plane. The maximum upward velocity in
the wake can reach up to 4 times the bubble velocity, so liquid is
transported upwards in the wake although it is not the same fluid
that follows the bubble all the time, due to the high instability
and vortex shedding.

As the viscosity increases, the liquid film velocity decreases
and the wake instabilities due to the turbulence tend to disap-
pear. For the 0.3 wt% solution (Re = 76), there is still some
instability in the trailing edge of the bubble but much less than
in the 0.1 wt% case. In Figure 9 is represented the flow field in
the wake of a Taylor bubble rising in 0.3 wt% solution and al-
though the trailing edge still oscillates, it is already possible to
see a large asymmetric vortex.

In the 0.4 wt% solution (Re = 44), the Taylor bubble trailing
edge and the wake flow are already stable, as can be seen in
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Figure 9. Instantaneous velocity field in the wake of a Taylor bubble
rising in a 0.3 wt% solution

Figure 10. The wake flow pattern is now stable and symmetric,
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Figure 10. Instantaneous velocity field in the wake of a Taylor bubble
rising in a 0.4 wt% solution

so the three dimensional flow field in the wake can be easily
extrapolated by rotation of this plane. For the 0.4 wt% , the
liquid coming from the falling film smoothly expands after the
bubble trailing edge inducing the formation of a closed donut
shaped vortex in the wake of the bubble, that climbs with it.

As the Re decreases, the size of the wake also decreases. Due



to the higher viscosity, the shear stresses exerted in the liquid
are higher, which slows down faster the fluid coming from the
liquid film, so it expands closer to the trailing edge.

If the slug velocity is subtracted to the velocity vectors, we
obtain the flow field referred to a moving reference frame that
rises with the same velocity of the bubble. In Figure 11 is repre-
sented an instantaneous flow field in the wake of a Taylor bubble
rising in a 0.5 wt% solution, in a reference frame moving with
the bubble velocity. From Figure 11 it becomes clear that the
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Figure 11. Instantaneous velocity field in the wake of a Taylor bubble
rising in a 0.5 wt% solution in a reference frame moving with the bubble
velocity

fluid coming from the liquid film expands around a recirculat-
ing zone that rises attached to the bubble.

The flow field in the wake of a Taylor bubble rising
in a 0.6 wt% solution is represented in Figure 12. In the
0.6 wt% solution, the recirculation zone in the wake is not so
clear. It is possible to see that the fluid coming from the liq-
uid film expands much closer to the trailing edge than in the
less viscous solutions and it goes up occupying the space that
the bubble was occupying the instant before. The liquid that
goes up in the center of the wake has now a velocity closer to
the bubble velocity, while in the previous cases, the liquid was
moving much faster. Figure 13 represents the same flow field of
the Figure 12 but in a reference frame moving with the bubble
velocity. It is possible to see that the fluid that comes from the
liquid film quickly expands occupying all the column section
with a severe velocity reduction. There is not a clear recircula-
tion zone immediately after the bubble trailing edge, due to the
small velocity amplitudes in this zone. It is possible that there
is still liquid being transported in the wake, but in much smaller
quantities and rotating velocity than in the less viscous cases.

The big differences between the Newtonian and non-
Newtonian fluids wake’s flow pattern appear in the higher vis-
cosity solutions. For the 0.8 and 1.0 wt% solutions, there is a
drastic change in the bubble trailing edge shape (Figure 4 and
also in the wake flow pattern, which are fully described by
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Figure 12. Instantaneous velocity field in the wake of a Taylor bubble
rising in a 0.6 wt% solution in a fixed reference frame.
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Figure 13. Instantaneous velocity field in the wake of a Taylor bubble
rising in a 0.6 wt% solution in a reference frame moving with the bubble
velocity.

Sousa et al [23]. In Figure 14 is represented the flow field in
the trailing edge of a Taylor bubble rising in a 0.8 wt% solution.
The flow around 0.8 wt% solution follows the tendency of the
previous cases, where as the viscosity increases, the expansion
of the fluid that comes from the liquid film happens closer to
the trailing edge. The liquid immediately expands in the end of
the liquid film, following the trailing edge shape and occupying
the place left by the bubble. This radial movement of the liquid
to the center of the column induces, by momentum diffusion, a
rotational movement in the liquid that is below. The liquid ro-
tates in the downward direction in the center of the column and
upwards away from the center, creating what is called a nega-
tive wake, once the velocity in the center of the column is in the
opposite direction of the bubble, contrasting with what happens
in Newtonian fluids.

It becomes clear that in this case there is no liquid transported
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Figure 14. Instantaneous velocity field in the wake of a Taylor bubble
rising in a 0.8 wt% solution in a fixed reference frame.

in the wake when we see the same flow field in a reference frame
moving with the Taylor bubble (Figure 15). It is evident from
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Figure 15. Instantaneous velocity field in the wake of a Taylor bubble
rising in a 0.8 wt% solution in a reference frame moving with the bubble
velocity.

Figure 15 that when seen in the moving reference frame, the liq-
uid smoothly flows, expanding according to the Taylor bubble
shape.

The flow around the trailing edge of a Taylor bubble rising
in a 1.0 wt% solution is represented in Figure 16 and has the
same pattern found for the 0.8 wt% solution but with a different
shaped edge and with a lower downward velocity.

To compare the wake patterns and velocity magnitudes, the
vertical component of the liquid velocity at z∗ = 0.2D is repre-
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Figure 16. Instantaneous velocity field in the wake of a Taylor bubble
rising in a 1.0 wt% solution in a fixed reference frame.

sented in Figure 17 for some of the cases studied. Figure 17 puts
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Figure 17. Vertical component of the liquid velocity in a fixed reference
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in evidence the occurrence of the negative wake for the 0.8 and
1.0 wt% solutions, due to the positive (downward) liquid veloc-
ity in the center of the column at 0.2D behind the trailing edge,
which will have consequences in the coalescence phenomena.

5 Conclusions

Measurements of the flow field around Taylor bubbles rising
in different solutions were made. This study shows the differ-
ent wake flow patterns found in a Re range between 4 and 254,
which are essential to understand the coalescence mechanism
between two slugs and the minimum distance between them
above which there is no interaction between the Taylor bubbles.



From these studies it becomes clear that for high values of Re
there should be interaction between two consecutive slugs even
if they are separated by a large distance and that for the low val-
ues of Re, where the negative wake was found, it is not expected
that the slugs coalesce.
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NOMENCLATURE

D Column diameter [m]
De Deborah number (λ/τ)[dimensionless]
Lb Bubble length [m]
n Carreau simplified model parameter
r Radial position [m]
Re Reynolds number (ρUbD/µb)[dimensionless]
T Temperature [◦C])
Ub Bubble velocity [m/s]
V Vertical component of liquid velocity [m/s]
z Vertical distance to bubble nose [m]
z∗ Vertical distance to trailing edge center [m]
γ̇ Shear rate [1/s]
γ̇b Bubble Shear rate (Ub/D) [1/s]
λ Fluid characteristic time [s]
µ Liquid viscosity [Pa s]
µ0 Liquid viscosity at zero shear rate [Pa s]
µb Liquid viscosity at bubble shear rate [Pa s]
τ Flow characteristic time (Lb/Ub) [s]
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