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Abstract. In a previous study, the authors developed the planning of
the water used in the irrigation systems of a given farmland in order
to ensure that the field cultivation is in a good state of preservation.
In this paper, we introduce a model to minimize the water flowing into
a reservoir that supplies different fields with different types of crops.
This model is described as an optimal control problem where the water
flow from a tap and the water used in the fields are the controls. The
trajectories are described as the humidity in the soil and the amount of
water in the reservoir.

1 Introduction

According to [13], the water demand in Portugal in the three sectors of activity –
urban, industry and agriculture amounts to 7500×106m3/year. The agriculture
is responsible for 80% of the water demand, most of it in the in the spring and
summer periods, and it is estimated that 37.5% is lost due to various inefficien-
cies. These facts affect strongly the agriculture production. It is, consequently,
relevant to discuss the use of water in these conditions, and try to find the best
technical solutions, economic and social, to improve the efficiency of water usage.

The irrigation planning systems here developed are based on the minimiza-
tion of the volume of water used in irrigation (control), knowing that the vari-
ation of water in the soil (trajectory) is given by the hydrologic balance. The
connections between an irrigation planning system and an optimal control prob-
lems are easily established, however this connection still has lot to be explored,
see for example [2], [1] and [5].

A model to optimize the water use in the irrigation of a farm field via opti-
mal control (water flow) that takes into account the evapotranspiration, rainfall,
losses by infiltration and runoff was developed in [7]. There, the solution was
obtained for an “Yearly Planning” problem considering different weather sce-
narios with the help of the so called “precipitation factor” that is multiplied
by the rainfall monthly average. In [6], the authors present the “Initial Planning
Problem” for rainfall: this includes an extra term taking into account the rainfall
in the previous time period (this rainfall model was statistically proven to be
significant) where a comparison between this new model and the solution know-
ing the rainfall a priori was shown. A characterization of the solution using the
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necessary conditions of optimality was made in [8], and thereby the numerical
results were validated. Most of these results and further details are collected in
[11].

In this paper, we developed a model that allows to minimize the water used
in a reservoir to supply different fields with different types of crops where the
water of precipitation can be collected in a given area, having in mind that is
crucial to ensure the good state of preservation of the cultivation field. The main
contribution with respect to previous works is precisely the fact that the model
includes several different fields that share a common reservoir.

This paper is organized as follows. Section 2 presents the problem formula-
tion. Section 3 describes the numerical model and Section 4 reports numerical
results in different scenarios. Concuding remarks are drawn in Section 5.

2 The Problem

In order to describe our problem, we start by defining the variables used. The
controls are: v total water flow coming from the tap and uj water flow introduced
in field j via its irrigation system. The states are: xj water in the soil of field j
and y total of amount of water stored in reservoir.

We intend to minimize the total of water flow coming from the tap to a
reservoir. The objective function is:

min

∫ T

0

v(t)dt.

The variation of water in reservoir is given by:

ẏ(t) = v(t)−
P∑

j=1

Ajuj(t) + Cg(t),

where Aj represents the area of each field j and Cg(t) represents collected water
in a certain area C coming from the precipitation g in the time t.

The variation of water in the soil is given by the hydrologic equation, that
is, the variation of water in the soil is equal to what enters (water via irrigation
systems and precipitation) minus the loss (evapotranspiration of each crop hj
and loss by deep percolation βxj(t), a percentage of water that is in the soil).

So,

ẋj(t) = uj + g(t)− hj(t)− βxj(t), ∀ j = 1, . . . , P

We note that each field has only one crop.

In order to ensure that the crop is in good state of conservation, the water in
the each field has to be sufficient to satisfy the hydric needs of each crop (xmin),
that is:

xj(t) ≥ xminj
.
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The physical limitations of: the amount of water that comes from a tap, the
amount of water that comes from the irrigation systems and the reservoir are
given, respectively, by:

y(t) ∈ [0, ymax]
uj(t) ∈ [0,Mj ]
v(t) ∈ [0,

∑
j AjMj ]

where ymax is the maximum quantity of water in the reservoir and Mj is the
maximum water flow coming from the tap in each field.

We assume that at the initial time the humidity of the soil in each field and
the water in the reservoir are given. Also, the water in the reservoir at the initial
time and to the final time are imposed to be equal. So, we assume that:

xj(0) = x0j
y(0) = y(T ) = y0

In summary, the optimal control formulation for our problem is:

min

∫ T

0

v(t)dt

subject to:
ẋj(t) = −βxj(t) + uj + g(t)− hj(t) a.e. t ∈ [0, T ], ∀ j = 1, . . . , P

ẏ(t) = v(t)−
∑P

j=1Ajuj(t) + Cg(t) a.e. t ∈ [0, T ],

xj(t) ≥ xminj
∀ t ∈ [0, T ], ∀ j = 1, . . . , P

y(t) ∈ [0, ymax] ∀ t ∈ [0, T ]

uj(t) ∈ [0,Mj ] a.e. , ∀ j = 1, . . . , P

v(t) ∈ [0,
∑

j AjMj ] a.e.

xj(0) = x0j ∀ j = 1, . . . , P

y(0) = y(T ) = y0

where the constant parameters involved are the following:

P : number of fields;

Aj: Area of field j;

C: Area of the collector of precipitation water;

β: the percentage of loss in the soil;

xminj
: hydric needs of the culture in each field (per m2);

ymax: the maximum quantity of water in the reservoir;

Mj: maximum water flow coming from the tap of time t in each field (per m2);

x0j : the humidity of the soil in each field (per m2);

y0: the quantity of water in the reservoir at initial time.
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The decisions variables are the states (xj , y) and the controls (uj , v) functions
for j = 1, . . . , P . These and other time-varying functions are described in the
following way:

xj(t): water in the soil of field j at time t (per m2);
uj(t): water flow introduced in filed j via its irrigation systems at time t (per

m2);
y(t): total of amount of water stored in reservoir at time t (maximum capacity

ymax);
v(t): total water flow coming from the tap at time t;
g(t): the precipitation at time t (per m2);
hj(t): the evapotanspiration at time t of each field (culture) (per m2);

The solution to this optimal control problem can be characterized by neces-
sary conditions of optimality in the form of a maximum principle (see e.g. [14,
11, 10, 4, 9, 3]. In this paper, however, we discuss the numerical results.

3 Numerical Model for the Irrigation Problem

In this section, we obtain the numerical solution to our problem transcribing it
into a sequence of finite dimensional linear programming problems.

For that, we start by defining a finite number of time instants i = 1, . . . , N+1

xi = x(ti)
ui = u(ti)

where ti = (i− 1)h and h = T/N .
We use the Euler-type discretization to the differential equations:

ẋ = f(t, x, u) is aproximated to xi = xi−1 + hf(ti−1, xi−1, ui−1).

To implement this optimization problem, we use fmincon function of Mat-
Lab with the algorithm “active set”, by default and the parameter “Tolfun” is
considered 1E − 6.

3.1 Rainfall models

To estimate rainfallwe use the monthly rainfall data from Instituto Português do
Mar e da Atmosfera ( www.ipma.pt), in the Lisbon area. We defined an average
(using the 10 years data) rainfall for each month of the year, the rain monthly
average is: 10−3×

J F M A M J J A S O N D
111.4 94.7 80.2 57.1 29.62 18.84 1.26 7.04 30.6 127 121.98 119.3 (m3/month)

Therefore g(ti) = rain monthly average(ti).
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3.2 Evapotranspiration model

We used the Pennman - Monteith methodology [15] to calculate evapotranspi-
ration of our culture along the year. In order to do so, we use the formulation:

ET (ti) = KcET0(ti),

where Kc = 0.825 is the culture coefficient for the evapotranspiration (in our
case potatoes) and ET0 is the tabulated reference value of evapotranspiration
that we consulted in [12] for the Lisbon region. The evapotranspiration of our
culture in Lisbon is given by the following table: 10−3×

J F M A M J J A S O N D
19.8 28.0 55.27 89.1 116.32 137.77 155.92 136.95 84.97 53.62 22.27 16.5 ( m3/month)

So, h(ti) = Et(ti).

4 Results

To simulate our problem, we assume that:

P = 3 T = 12 Mj = 10 m3/month for each fieldj

ymax = 0.05×At y0 = 0.01×At β = 15%

where At is the total area.
Our first simulation corresponds to a closed reservoir that supplies three fields

with the same area in which each field has a different culture. In this example,
we consider the three crops: wheat, sugar cane and olive, and the following
parameters:

xmin = [0.033 0.021 0.032] Kc = [0.825 0.95 0.5] area = [1 1 1]

x0 = 5xmin C = 0

The humidity of the soil (estimated trajectory) and the amount of water used
in each field (estimated control) is given in Fig. 1.

As expected, the crops need water between May and September, the months
when the water consumption is higher are June, July, the crop that needs less
water is olive, and the crop that needs more water is the sugar cane.

The estimated amount of water to irrigate the three field per m2 is
0.8330 m3/year, where in each field we spend the following amount of water per
m2:

uwheat := [0 0 0 0 0 0.0331 0.1323 0.1109 0.0445 0 0 0];
usugar cane := [0 0 0 0 0 0.0885 0.1500 0.1262 0.0533 0 0 0];
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Fig. 1. Humidity in the soil

uolive := [0 0 0 0 0 0 0.0113 0.0662 0.0167 0 0 0].

In Fig. 2, we describe the variation of water in the reservoir and the amount
of water that comes from a tap.

Fig. 2. Water needs

We note that the water in the reservoir at the initial time is equal to the water
at the final time. The water that comes from the tap starts to be consumed earlier
than the hydric needs of the crops, so the water storage in reservoir increases.
June and July are the month when the irrigation takes the highest value, and
also when the water in the reservoir decrease. For the water in the reservoir at
the initial time to be equal to the one at the final time, the tap is closed later
than the needs of the crop, in November.
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In the next simulation, we consider that the fields have different areas. We
consider the same initial data of the previous problem and we assume that fields
have 1000 m2 of wheat, 750 m2 of sugar cane and 1250 m2 of olive. That is:

xmin = [0.033 0.021 0.032] Kc = [0.825 0.95 0.5] A = [1000 750 1250]

x0 = 5xmin C = 0

The results obtained are reported in Fig. 3:

Fig. 3. Humidity in soil with fields having different areas

Comparing these results with the previous ones, we can see that in this case
the needs of water for the wheat field are higher than the ones for sugar cane
field.

The estimated amount of water to irrigate the three fields is 752.0795m3/year,
where in each field we spend the following amount of water:

uwheat := [ 0 0 0 0 0 33.06 132.33 110.8938 44.45 0 0 0];
usugar cane := [0 0 0 0 0 566.37 112.51 94.66 39.96 0 0 0];
uolive := [0 0 0 0 0 0 14.19 82.79 20.86 0 0 0].

In Fig. 4, we describe the variation of water in the reservoir and the variations
on the amount of water that comes from a tap.

We can see that variations of the water in the reservoir and the behaviour of
the water that comes from the tap is similar to the previous simulation.

In the next simulation, as in previous ones, we consider the irrigating of
three fields with different crops and different areas, however in this case we take
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Fig. 4. Water needs where the fields have different areas

advantage of the rainfall information. We assume that reservoir has an area of
30 m2 to collect rain fall. That is,

xmin = [0.033 0.021 0.032] Kc = [0.825 0.95 0.5] A = [1000 750 1250]

x0 = 5xmin C = 30

The variation of water in the reservoir and the variation of the amount of
water that comes from a tap are described in Fig. 5.

Fig. 5. Water needs with C = 30

In this case, the amount of water needed is 721.1735 m3/year, which results
in a reduction of 4.1% in the water needs. We can see that in November the
water that comes from the tap is less than the one in the previous simulation.
However, the water saving is negligible. We may conclude that a larger collection
area of the reservoir would be of advantage.
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In the last simulation, we assume that the top of reservoir has now 200 m2

of area. The variation of water in the reservoir and the variation of the amount
of water that comes from a tap is described in Fig. 6.

Fig. 6. Water needs with C = 200

We can see that until April the water from the precipitation is saved in the
reservoir and until this month the tap is not opened. The tap is closed earlier
than the previous simulations; it is closed in September. In this case the amount
of water needed is 550.2994 m3/year, resulting in a reduction of 26, 83% in the
water needs.

5 Conclusion

We have developed an irrigation planning model to minimize the water used to
supply different fields with different types of crops. The main contribution with
respect to previous works is precisely the fact that the model includes several
different fields that share a common reservoir, which not only serves as storage,
but also is from where the water inflow coming from either tap or rain fall
is collected. The optimal control problem formulated is solved numerically for
different scenarios of crop area and reservoir capacity.
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planning: an optimal control approach. International Conference of Numerical
Analysis and Applied Mathematics, AIP Conference Proceedings, 1558:622–626,
2013.

7. S. Lopes, F. Fontes, R. M. S. Pereira, and G. J. Machado. Irrigation planning
in the context of climate change. Mathematical Models for Engineering Science -
MMES11, pages 239–244, 2011.

8. Sofia O. Lopes, F. A.C.C. Fontes, Rui M.S. Pereira, MdR de Pinho, and C. Ribeiro.
Optimal control for an irrigation planning problem: Characterization of solution
and validation of the numerical results. Lecture Notes in Electrical Engineering,
321:157–167, 2015.

9. Sofia O Lopes, FACC Fontes, and MdR de Pinho. On constraint qualifications
for nondegenerate necessary conditions of optimality applied to optimal control
problems. Discrete and Continuous Dynamical System-A, 29(2), 2011.

10. Sofia O Lopes, Fernando ACC Fontes, and MDR de Pinho. An integral-type
constraint qualification to guarantee nondegeneracy of the maximum principle
for optimal control problems with state constraints. Systems & Control Letters,
62(8):686–692, 2013.

11. Sofia O Lopes, Fernando ACC Fontes, Rui MS Pereira, M Rosário de Pinho, and
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