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Abstract

The sampled–data framework captures conventional sampled–data systems, and it also provides an adequate representational
tool for contemporary cyber–physical and smart autonomous systems. One of the major concerns for analysis and synthesis
of such systems is safe operation under constraints. This paper contributes to resolving this cornerstone aspect by focusing on
related positive invariance notions within sampled–data setting. More specifically, we introduce generalized positive invariance
notions that are topologically compatible with sampled–data framework and that overcome inevitable conservatism of the
classical positive invariance notions. We propose exact generalized positive invariance and complement it with the guaranteed
generalized positive invariance. The former notion is topologically nonconservative, while the latter notion is approximate
and guaranteed but it leads to finitely parameterizable and practicaly computable generalized positively invariant sets. The
limiting behaviour and computational aspects are also discussed, and an example illustrating the proposed notions is provided.
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1 Introduction

The contemporary engineered systems make extensive
use of the interface between cyber and physical realms,
and frequently operate in autonomous mode. Indeed, the
cyber–phyisical and smart autonomous systems build
the bridge between digital and actual worlds in order to
push performance envelopes to previously daring limits,
and to facilitate previously unattainable operational ca-
pabilities. Naturally, the digital realm is almost always
utilized for a variety of computational tasks encapsu-
lating, inter alia, discovery of the actual reality, gather-
ing information about operating environments and pro-
cessing observed data as well as related decision making
leading to enhanced and optimally tunned performance
of the overall system. A variety of systems typically per-
ceive continuous appearance of the physical world, and
translate the observed data to its digital representation
in order to process it effectively with the aid of avail-
able computing units [1]. The interface between contin-
uous reality and its digital representation is naturally
captured by the important framework of sampled–data
systems [2]. Not surprisingly, the very nature of cyber–
physical systems and the ever increasing levels of au-
tonomy and sophistication as well as nonconventional
contemporary demands and performance specifications
call for suitable extensions of classical approaches to the
analysis and synthesis of sampled–data systems. Inter-

1 E–mail: sasa.v.rakovic@fe.up.pt. Tel.: +351 910 831 053.

estingly enough, even the nonconservative and system-
atic analysis and synthesis of sampled–data systems sub-
ject to classical constraints and conventional uncertainty
offers nontrivial challenges. These existing research is-
sues are further amplified by contemporary and noncon-
ventional demands for a prior–to–operation assurances
of, at least, safe, resilient, secure and fault tolerant op-
erability.

The systematic treatment of classical and contemporary
performance constraints and objectives requires utiliza-
tion of adequately sophisticated analysis and synthesis
tools. An almost ideal platform for developing appropri-
ate analysis and synthesis methodologies for versatile
modern systems is provided by reachability and set in-
variance or, more generaly, by set–valued analysis. The
corresponding set–valued methods [3–7] have proved
their beneficial value over a wide spectrum of funda-
mental problems within fields of dynamics, controls and
systems in general, and deterministic/robust/stochastic
optimal and model predictive control syntheses as well
as safety and stability analyses in particular. Not sur-
prisingly, influential studies [4, 5, 7–14] have reached
a clear conclusion that the analysis of dynamics, and
the synthesis of control systems, under constraints and
uncertainty by utilizing reachability and set invariance
techniques enables one to provide formal and a–priori
guarantees of the desired structural properties.

Within the context of constrained dynamics one of the
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most important concerns is safe operation under con-
straints. Likewise, within the setting of constrained con-
trol systems the related key issue is the design of con-
trol laws ensuring safe operation under constraints. The
ability to operate safely under constraints is mathemat-
ically captured by the notions of safe sets and positively
invariant sets in the case of constrained dynamics as well
as control safe sets and control invariant sets in the case
of constrained control systems. Naturally, the prime con-
sideration is given to the maximal such sets for obvious
reasons (one of which is the deployment of the largest do-
mains of autonomous/controlled safe operability). Even
the early literature has provided answers to the impor-
tant questions concerned with the characterization and
computation of maximal positively invariant sets [8] also
known as viability kernels [4]. As a matter of fact, the
topics of characterization and computation of safe sets,
positively invariant sets, control safe sets and control
invariant sets have formed an improtant research area;
See above mentioned articles [4, 5, 7–14], and numerous
references therein, for a more detailed overview of these
basics notions and their robust variants applicable to
the systems under uncertainty. The rather rich litera-
ture offers a plethora of results for characterizing and
computing control safe, safe, control invariant and posi-
tively invariant sets. However, the major part of the ex-
isting and ellaborate research in the field focuses almost
exclusively on either discrete or continuous times formu-
lations. Rather surprisingly, there is a limited literature
addressing, to a sufficient extent, the related research
questions within the setting of sampled–data systems.
Indeed, the literature on reachability and set invariance
within sampled–data setting is very scarce with the ex-
ception of a sequence of more recent articles [15–19].

As already pointed out, the sampled–data setting arises
naturally in many traditional and modern applications,
and it is applicable to the conventional sampled–data
systems as well as to the contemporary cyber–physical
and smart autonomous systems. More importantly,
sampled–data setting plays a key role for enabling anal-
ysis of dynamics and synthesis of control systems to
be carried out using discrete time techniques while en-
suring constraint satisfaction in continuous time sense.
However, a major peculiarity of sampled–data setting is
inapplicability, to a prohibiting extent, of discrete and
continuous time reachability and set invariance [19].
Indeed, the formulations of the standard reachability
and set invariance problems in either continuous or dis-
crete time preserve the underlying semi–group property
and, thus, allow for the utilization of the conventional
notions. This is in a stark contrast to sampled–data
setting in which the control actions are evaluated and
implemented at prescribed sampling time instances and
kept constant throughout sampling intervals, while the
satisfaction of underlying constraints is imposed onto
pieces of state and control trajectories throughout whole
sampling intervals. Unfortunately, such a setting natu-
rally leads to a lack of semi–group property and renders

classical notions conservative and, in fact, inapplicable.

In this paper, we introduce a topologically compati-
ble and flexible notion of positive invariance for con-
strained linear sampled–data systems controlled by lin-
ear sampled–data feedbacks. The characterization and
computation of the ordinary and maximal positively in-
variant sets for constrained linear dynamics have been
addressed within both discrete and continuous time set-
tings [4, 5, 7, 8, 10]. However, as already hinted, these
standard approaches lead to a conservative and/or non-
computable notions of ordinary and positively invariant
sets within sampled–data setting. In particular, in dis-
crete time setting the controls are implemented, and the
constraints are imposed, at the discrete times. Likewise,
in continuous time setting, the control is applied, and the
constraints are invoked, at all times. In sampled–data
setting, the controls are implemented in discrete time
sense while the constraints are imposed in the continu-
ous time sense. Thus, we introduce notions of generalized
positively invariant sets. These sets are positively invari-
ant in discrete time sense (the related state trajectories
belong/return to such sets at the sampling instances)
and safe in continuous time sense (the related state tra-
jectories might leave such sets during sampling inter-
vals but never leave original state constraint set). The
rational behind such generalized and relaxed notion is
topological compatability with the underlying sampled–
data control process: controls are updated at sampling
instances and kept constant until successor sampling in-
stance, so related set should be positively invariant at
these sampling times, while no violation of original state
constraints should be allowed throughout sampling in-
tervals. Strictly speaking any such set is not positively
invariant in the conventional sense. However, as detailed
in what follows, any such set induces a positively invari-
ant family of sets which is the generalized notion origi-
nally introduced for output feedback set invariance in a
relatively recent article [20].

We consider exact and guaranteed notions of generalized
positive invariance, and we show that the exact notion
(as the wording suggests) does not introduce any conser-
vatism and, thus, it is theoretically “optimal”. Unfortu-
nately, the exact generalized positively invariant sets are
obtained by considering discrete time dynamics subject
to semi–infinite constraints and, thus, such sets might
fail to be finitely parameterizable and practically com-
putable. This computationally crucial issue is handled
by introducing the notion of a guaranteed generalized
positive invariance. This notion leads to generalized pos-
itively invariant sets that preserve finite parameteriz-
ability and enhance practical computability. In fact, we
derive natural and mild conditions under which such sets
are computable by using purely techniques for discrete
time positive invariance; More precisely, by utilizing dis-
crete time dynamics subject to finitely parameterizable
constraints. Furthermore, we establish formally that the
maximal guaranteed generalized positively invariant set
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can be constructed to be finitely parameterizable, prac-
tically computable and arbitrarily close approximation,
w.r.t. the Hausdorff distance, of the related maximal ex-
act generalized positively invariant set. The main phi-
losophy of our approach is to convert the sampled–data
positive invariance problem into a suitably formulated
discrete time positive invariance problem. To realize our
approach, we consider a standard sampling of the dy-
namics and controls, and we also allow for an artificial
subsampling of the state constraints. The former sam-
pling is implemented in a manner customary to sampled–
data systems, while the latter subsampling is used only
offline for analysis; More precisely, for the definition of
modified constraint sets that are specified by invoking
the state constraints at a finite number of subsampling
instances (thus in discrete time sense), and that ensure
the satisfaction of state constraints throughout sampling
intervals (thus in continuous time sense).

Paper Structure: Section 2 describes a constrained
linear system controlled by linear state feedback in a
sampled–data setting. It also comments on plausible no-
tions of positively invariant sets, and it outlines the goals
of this paper. Section 3 focuses on characterization and
computability of the ordinary and maximal exact gen-
eralized positively invariant sets. Section 4 introduces
approximate but finitely parametrizable and guaranteed
generalized positively invariant sets. Section 5 discusses
computational aspects of the proposed notions and de-
livers an illustrative example. Section 6 draws conclu-
sions and comments on extensions and future research.

Basic Nomenclature and Definitions: The sets of
nonnegative integers and real numbers are denoted by
Z≥0 and R≥0, respectively. Any given sampling period
T ∈ R≥0, T > 0 induces sequences of sampling instances
π and sampling intervals θ both w.r.t. R≥0 specified via:

π := {tk}k∈Z≥0
and θ := {Tk}k∈Z≥0

, where ∀k ∈ Z≥0,
tk+1 := tk + T with t0 := 0 and Tk := [tk, tk+1).

Given a set X and a real matrixM of compatible dimen-
sions the image of X under M is denoted by

MX := {Mx : x ∈ X},

while the preimage of X under M is denoted by

M−1X := {x : Mx ∈ X}.

For any two sets X and Y in Rn, the Minkowski set
addition is specified by

X ⊕ Y := {x+ y : x ∈ X , y ∈ Y}.

A set X in Rn is a C–set if it is compact, convex, and
contains the origin. A set X in Rn is a proper C–set
if it is a C–set and contains the origin in its interior.

A set in Rn described by a finitely many constraints is
referred to as the finitely parameterizable set. Likewise,
a set in Rn described by a uncountably infinite number
of constraints is referred to as the semi–infinite set.

Given any two compact sets X and Y in Rn, Hausdorff
distance is defined by

HL(X ,Y) := min
α≥0
{α : X ⊆ Y ⊕ αL and Y ⊆ X ⊕ αL},

where L is a given symmetric proper C–set in Rn induc-
ing vector norm

|x|L := min
η
{η : x ∈ ηL, η ≥ 0}.

ρ(M) denotes the spectral radius of a matrixM ∈ Rn×n.
%L(X ) denotes the radius of a compact set X in Rn, and
it is specified by

%L(X ) := HL(X , {0}).

We work with nonempty sets unless stated otherwise. We
distinguish row and column vectors only when needed
and we use the same symbol for a variable x and its
vectorized form. For clarity of presentation, we provide
proofs of less obvious statements in the appendices.

2 Background

2.1 Constrained Sampled–data Linear Dynamics

Consider a linear system described, for all t ∈ R≥0, by:

ẋt = Axt +But, (2.1)

where, for any time t ∈ R≥0, xt ∈ Rn and ut ∈ Rm
denote, respectively, state and control values, while ẋt
denotes the value of the state derivative w.r.t. time, and
the matrices A ∈ Rn×n and B ∈ Rn×m are known ex-
actly. The linear system (2.1) is controlled via sampled–
data linear state feedback so that

∀k ∈ Z≥0, ∀t ∈ Tk, ut(xt) := Kxtk , (2.2)

whereK ∈ Rm×n is a known exactly control gain matrix.
We stress that the control ut at time instance t in the
sampling intervals (tk, tk + T ) is not a function of the
state xt at that time instance, rather it is a function of the
state at the last sampling instance so that ut = ut(xtk).
To define sampled–data solutions, let, for any t ∈ [0, T ],

At := etA and Bt :=

(∫ t

0

eσAdσ

)
B, (2.3)
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where the related integral is the standard matrix–valued
integral, and let also, for any t ∈ [0, T ],

Mt := At +BtK. (2.4)

In view of (2.1)–(2.4), given any initial state x ∈ Rn, the
sampled–data solutions satisfy at the sampling instances
tk, for all k ∈ Z≥0,

xtk = Mk
Tx, (2.5)

while during sampling intervals Tk, the sampled–data
solutions satisfy, for all k ∈ Z≥0 and all t ∈ T0,

xtk+t = Mtxtk . (2.6)

The hard constraints imposed on the values of state and
control trajectories, xt and ut, are, for all t ∈ R≥0,

xt ∈ X and ut ∈ U. (2.7)

Herein, we work under the following natural conditions.

Assumption 1 The sampling period T is such that the
matrix pair (AT , BT ) is strictly stabilizable. The control
matrix K is such that the matrix MT = AT + BTK is
strictly stable. The state and control constraint sets, X
and U, are proper C–sets in Rn and Rm, respectively.

2.2 Positive Invariance in Discrete Time Sense

Within the above setting, a positively invariant set in
discrete time sense is any set S in Rn satisfying that

∀x ∈ S, MTx ∈ S, x ∈ X and Kx ∈ U

or equivalently and more compactly written

MTS ⊆ S, S ⊆ X and KS ⊆ U. (2.8)

Positive invariance in discrete time sense for sampled–
data setting is, in fact, identical to positive invariance
for constrained discrete time linear dynamics. The lat-
ter topic is a thoroughly studied and deeply understood
research theme in set invariance [5, 10], with a plethora
of conceptual and concrete algorithmic methods for the
design of ordinary as well as maximal positively invari-
ant sets for the dynamics x+ = MTx and the constraint
set {x ∈ X : Kx ∈ U}. However, despite potential
theoretical and computational convenience, positive in-
variance in discrete time sense is not really applicable
to sampled–data setting, as it does not allow one to as-
sert that, in general, the related sampled–data solutions
actually satisfy constraints as specified in (2.7).

2.3 Positive Invariance in Sampled–data Sense

A direct, topologically inflexible and almost surely con-
servative, attempt to obtain a sampled–data analogue
of positive invariance in discrete time sense would be to
demand that a set S in Rn satisfies that

∀x ∈ S, ∀t ∈ [0, T ], Mtx ∈ S, x ∈ X and Kx ∈ U

or equivalently and more compactly written

∀t ∈ [0, T ], MtS ⊆ S, S ⊆ X and KS ⊆ U. (2.9)

The main problem with such an approach stems from
the fact that an uncountably infinite number of dynamic,
positive invariance related, conditions is imposed on a
single set, i.e. ∀t ∈ [0, T ], MtS ⊆ S. Clearly, the fact
that the controls are updated at the sampling instances
suggests that it is overly optimistic (or even impossible)
to expect the related sampled–data state trajectories to
remain with a nontrivial set S throughout the whole
sampling interval. Indeed, such a requirement is overly
conservative and particularly so when the matrix A is
unstable and the sampling period T is of practical size.

A generalized, and topologically compatible, notion of
positive invariance in sampled–data sense would be the
one that guarantees positive invariance in discrete time
sense as well as safety, or positive invariance if it is at-
tainable, in continuous time sense. Such a notion would
require a set S in Rn to satisfy that

∀x ∈ S, MTx ∈ S, ∀t ∈ [0, T ), Mtx ∈ X and Kx ∈ U

or equivalently and more compactly written

MTS ⊆ S, ∀t ∈ [0, T ), MtS ⊆ X and KS ⊆ U. (2.10)

Strictly speaking, the above conditions postulate posi-
tive invariance in discrete time sense and safety in con-
tinuous time sense. In plain words, the trajectories com-
mencing in S are allowed to leave the set S during the
sampling intervals as long as they do not leave the state
constraint set X, and are, in addition, required to return
to the set S at the sampling instances. Consequently,
such a set should not really be refereed to as a positively
invariant set in the conventional sense. Nevertheless, let-
ting, for any such set S,

∀t ∈ [0, T ], St := MtS (2.11)

it follows that a family S of sets St, induced by the set
S and specified by

S := {St : t ∈ [0, T ]} (2.12)
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is a positively invariant family of sets in the sense that

∀t ∈ [0, T ], MtS = St ∈ S and ST ⊆ S0 = S ∈ S,

∀t ∈ [0, T ], St ⊆ X and KS0 ⊆ U. (2.13)

Thus, the latter notion is, indeed, a generalized and re-
laxed notion of positive invariance within a sampled–
data setting. For this reason, typographical convenience
as well as for technical simplicity, reflected by our pref-
erence towards the utilization of a single set instead of
a family of sets induced by an adequate set, we deploy a
term “generalized positively invariant set” for any set S
satisfying conditions (2.10). No confusion should arise.

2.4 Objectives

Our main objectives are to analyze the characterization
and computation of ordinary and maximal generalized
positively invariant sets. In particular, we focus on:

• The exact, semi–infinite, characterization, and com-
putation, of the maximal generalized positively invari-
ant set.
• The guaranteed, finitely paramaterizable, character-

ization, and computation, of the positively invariant
approximations of the maximal generalized positively
invariant set.

3 Exact Generalized Positive Invariance

The characterization and computation of an ordinary
or the maximal generalized positively invariant set for
sampled–data setting can be transformed to a problem
of characterizing and computing an ordinary or the max-
imal positively invariant set for discrete time setting. In-
deed, such a transformation is possible by an adequate,
and, in fact, equivalent reformulation of state and control
constraints imposed on sampled–data system at all times
to adequately modified state and control constraints im-
posed on sampled–data system at the sampling instances
instead of all times.

3.1 Exact Semi–infinite Constraint Set

The state constraints on sampled–data solutions ema-
nating in a generalized positively invariant set S induce
state constraint admissibility conditions taking form

∀t ∈ [0, T ), MtS ⊆ X, (3.1)

which can be equivalently rewritten as

∀t ∈ [0, T ), S ⊆M−1t X. (3.2)

Thus, letting,

XS :=
⋂

t∈[0,T )

M−1t X (3.3)

the state constraint admissibility conditions can be com-
pactly and equivalently written as the set inclusion

S ⊆ XS . (3.4)

Likewise, letting,

XK := {x ∈ Rn : Kx ∈ U}, (3.5)

the control constraint admissibility conditions read as

S ⊆ XK . (3.6)

Thus, letting,

XE := XS
⋂

XK , (3.7)

the exact overall constraint admissibility conditions are
simply stated as

S ⊆ XE . (3.8)

3.2 Exact Generalized Positively Invariant Sets

The condition for generalized positive invariance, spec-
ified in (2.10), takes the following simplified form

MTS ⊆ S and S ⊆ XE . (3.9)

Now, the definition of XE in (3.7) is exact in the sense
that no conservatism is induced by converting condi-
tions (2.10) to aggregated form (3.9). Thus, we simply
use the term “exact generalized positively invariant set”
for any set S satisfying conditions (3.9). This convention
applies to both ordinary and maximal such sets.

The latter conditions (3.9) are, in fact, analogue to the
positive invariance conditions for discrete time dynam-
ics x+ = MTx subject to constraints x ∈ XE . However,
a key point here is that, even when the sets X and U
are finitely parameterizable, the set XS is an uncount-
ably infinite intersection of finitely parameterizable sets.
Thus, the overall state constraint set XE is itself a semi–
infinite set described by the uncountably infinite num-
ber of conditions taking the form MtS ⊆ X. This fact
does not represent major obstacle for the characteriza-
tion of the exact generalized positively invariant sets, as
indeed any such set satisfies set inclusions of (3.9) or,
equivalently, the set inclusion

S ⊆
(
M−1T S

)⋂
XE . (3.10)

Furthermore, the characterization of the maximal exact
generalized positively invariant set, say S∞E , can also be
derived with relative ease. Namely, the maximal exact
generalized positively invariant set can be characterized,
and potentially computed, by employing the standard
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set recursion [4, 5, 8, 10] specified within the sampled–
data setting, for all k ∈ Z≥0, by

Sk+1 :=
(
M−1T Sk

)⋂
XE with S0 := XE . (3.11)

In fact, the maximal exact generalized positively invari-
ant set is the maximal set, w.r.t. set inclusion, such that

S =
(
M−1T S

)⋂
XE . (3.12)

By a direct application of well–known results concern-
ing the maximal positively invariant set for discrete time
setting [4, 5, 8, 10] , the maximal exact generalized pos-
itively invariant set is, in fact, the Hausdorff limit of
the set sequence {Sk}k≥0 generated by (3.11) and thus,
since the sets Sk are monotonically nonincreasing (i.e.
∀k ≥ 0, Sk+1 ⊆ Sk) by construction, it is also given by

S∞E =
⋂
k≥0

Sk. (3.13)

In our setting, the iterates Sk of the set recursion (3.11)
are guaranteed to be proper C–sets in Rn and, fur-
thermore, the existence of a finite integer k∗ such that
Sk∗ = Sk∗+1 and, thus, S∞E = Sk∗ is also guaranteed.
These facts are collected together by the following result.

Theorem 1 Suppose Assumption 1 holds, and consider
the set sequence {Sk}k≥0 generated by (3.11). The sets
Sk, k ≥ 0 are proper C–sets in Rn such that for all k ≥ 0
it holds that Sk+1 ⊆ Sk. Furthermore, there exists finite
integer k∗ such that

Sk∗ = Sk∗+1 (3.14)

and, thus, the maximal exact generalized positively in-
variant set S∞E is given by

S∞E = Sk∗ . (3.15)

4 Guaranteed Generalized Positive Invariance

Despite the conceptually elegant and finitely determined
characterization of the maximal exact generalized posi-
tively invariant set S∞E , the semi–infinite nature of the
overall state constraint set XE (and, thus, the semi–
infinite nature of the iterates Sk, k ≥ 0 and their limit
S∞E ) renders the associated algorithmic procedures for
the construction of explicit or implicit forms of the iter-
ates of set recursion (3.11) computationally highly de-
manding and almost surely intractable in the general
case. This potential computational impracticability mo-
tivates development of numerically more applicable algo-
rithmic schemes. A natural way forward is to character-
ize the positively invariant approximations of the maxi-
mal exact generalized positively invariant set S∞E whose

explicit or implicit forms can be computed effectively by
means of finitely parameterizable sets. Our take on this
issue aligns with this approach, and we employ an in-
ner, finitely parameterizable, approximation of the semi–
infinite set XS specified in (3.3). To this end, sampling
interval [0, T ) is further subpartitioned into subintervals
[kδ, (k+1)δ), k ∈ Zq−1 := {k ∈ Z≥0 : k ≤ q−1}. Then,
the stringent state constraints xt ∈ (1−α)X are invoked
at corresponding subsampling instances kδ, k ∈ Zq−1,

∀k ∈ Zq−1, xkδ ∈ (1− α)X.

The scalar α ∈ [0, 1) is utilized, via scaling (1 − α) of
state constraint set X, to enforce constraints xkδ+τ ∈ X
during subsampling intervals [kδ, (k + 1)δ), k ∈ Zq−1,

∀k ∈ Zq−1, xkδ ∈ (1− α)X ⇒
∀k ∈ Zq−1, ∀τ ∈ (0, δ), xkδ+τ ∈ X.

This scheme is applied to each sampling interval. Thus,
from a conceptual point of view, our approach employs
usual sampling of control constraints and controlled dy-
namics in conjunction with faster subsampling of state
constraints. A more detailed discussion follows next.

4.1 Auxiliary Facts

The matrices At, Bt and Mt specified by (2.3) and (2.4)
are continuous and are, in fact, uniformly continuous
over the compact sampling interval [0, T ]. This fact
yields the following, and very helpful, observation link-
ing the sampling and subsamplng periods T and δ.

Lemma 1 Fix any T ∈ (0,∞), any K ∈ Rm×n, and
consider the matrices At, Bt and Mt specified by (2.3)
and (2.4). Then, for all ε > 0 there exists a δ > 0 such
that T = qδ for some q ∈ Z≥0 and

∀k ∈ Zq−1, ∀τ ∈ [0, δ], ‖Mkδ+τ −Mkδ‖ ≤ ε. (4.1)

For simplicity, the sampling and subsampling instances
are, respectively, equispaced, and the sampling period
T is an integer multiple of subsampling period δ, i.e.
T = qδ for some finite integer q ∈ Z≥0.

Assumption 2 The sampling period T is an integer
multiple of subsampling period δ, i.e. T = qδ, q ∈ Z≥0.

The above selection of the sampling and subsampling
periods, T and δ, reveals the following, and very helpful,
relation between the matrices Mkδ+τ and Mkδ.

Proposition 1 Suppose Assumptions 1 and 2 hold,
and consider matrices At, Bt and Mt specified by (2.3)
and (2.4). Then,

∀k ∈ Zq−1, ∀τ ∈ [0, δ],

Mkδ+τ = Mkδ +Akδ(Mτ − I). (4.2)
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4.2 Inner Finitely Parameterizable Constraint Set

To account for state constraint admissibility without in-
voking an uncountably infinite number of conditions of
the form S ⊆M−1t X for all t ∈ [0, T ) as specified in (3.2),
we postulate only finitely many, but more constricted,
constraints

∀k ∈ Zq−1, MkδS ⊆ (1− α)X or, equivalently,

∀k ∈ Zq−1, S ⊆M−1kδ (1− α)X (4.3)

where the scalar α is selected in α ∈ [0, 1). By defining

XF :=
⋂

k∈Zq−1

M−1kδ (1− α)X, (4.4)

an equivalent form of (4.3) reads as

S ⊆ XF . (4.5)

Our goal is to select T , δ and α so that the set inclu-
sion (4.5) guarantees state constraint admissibility of S,

∀k ∈ Zq−1, MkδS ⊆ (1− α)X ⇒
∀k ∈ Zq−1, ∀τ ∈ (0, δ), Mkδ+τS ⊆ X, (4.6)

without having to either invoke directly the latter con-
ditions or to utilize explicitly the set S. More precisely,
we aim to provide conditions on T , δ and α that guar-
antee that the set XF is an inner approximation of the
semi–infinite set XS of (3.7), i.e. that the set inclusion

XF ⊆ XS (4.7)

is guaranteed without having to compute explicitly the
semi–infinite set XS . To this end, we observe that by
Proposition 1, for all k ∈ Zq−1 and all τ ∈ (0, δ),

xkδ+τ = Mkδ+τx = Mkδx+Akδ(Mτ − I)x. (4.8)

Since relationsMkδx ∈ (1−α)X for all x ∈ S are already
stipulated, the sufficient conditions for ensuring xkδ+τ =
Mkδ+τx ∈ X for all x ∈ S and, thus, for guaranteeing
relation (4.7) are obtained by recognizing the fact that
S ⊆ (1 − α)X and requiring that Akδ(Mτ − I)x ∈ αX
for all x ∈ (1− α)X.

Assumption 3 The sampling period T , the subsampling
period δ and the scalar α ∈ [0, 1) are such that the set
inclusions

∀k ∈ Zq−1, ∀τ ∈ (0, δ),

Akδ(Mτ − I)(1− α)X ⊆ αX. (4.9)

hold true.

Remark 1 In view of Lemma 1 and Proposition 1, the
conditions (4.9) are natural and mild, as pointed out next.
Let,

η := max
η
{η : ηB ⊆ X, η ≥ 0},

and
η := min

η
{η : X ⊆ ηB, η ≥ 0},

where B := {x ∈ Rn : ‖x‖ ≤ 1} and ‖ · ‖ is compat-
ible with the norm used in Lemma 1. Then, the condi-
tions (4.9), are guaranteed to hold if α ∈ [0, 1) and δ > 0
are chosen in order to ensure that

εη ≤ α(1− α)−1η,

and that ε verifies relations (4.1). Clearly, a suitable
choice of δ > 0 is possible for all α ∈ (0, 1). Namely,
in this case, the existence of the corresponding δ > 0 is
guaranteed by Lemma 1 for all ε ∈ (0, α(1− α)−1ηη−1).
Naturally, the above simplified guaranteed relations can
be relaxed, possibly considerable, by employing the exact
analogues based on the relations (4.1), (4.2) and (4.9).

The relations (4.3) together with the conditions (4.9)
lead to the desired set inclusion (4.7). In fact, the set
inclusion of (4.7) can be extended and refined since, by
construction, it holds that ∀k ∈ Zq−1, kδ ∈ [0, T ) and

XS =
⋂

t∈[0,T )

M−1t X ⊆
⋂

k∈Zq−1

M−1kδ X, (4.10)

and since
⋂
k∈Zq−1

M−1kδ X = (1− α)−1XF , in turn that

XS ⊆ (1− α)−1XF . (4.11)

Thus, under our reasonable and mild assumptions, the
conditions MtS ⊆ X for all t ∈ [0, T ) can be ensured
by requiring that MkδS ⊆ (1 − α)X for all k ∈ Zq−1.
This desired relation is captured equivalently by the set
inclusion (4.7) that, under invoked assumptions, can be
shown to be true. Our next result formally verifies that
the claimed set inclusions (4.7) and (4.11) hold true.

Theorem 2 Suppose Assumptions 1, 2 and 3 hold, and
consider sets XS and XF specified by (3.3) and (4.4).
Then, the two–sided set inclusion

XF ⊆ XS ⊆ (1− α)−1XF (4.12)

holds true.

Indeed, the two-sided set inclusion established in the
above Theorem provides both finitely parameterizable
inner and outer approximations, XF and (1 − α)−1XF ,
of the semi–infinite set XS , and it also provides an es-
timate of the quality of these inner and outer approx-
imations as a function of the parameter α. As demon-
strated in what follows, these facts provide a ground for
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deriving meaningful estimates of the closeness of the re-
lated maximal exact and guaranteed generalized posi-
tively invariant sets. Furthermore, with above construc-
tion in mind, the state constraint admissibility is, indeed,
guaranteed by requiring set inclusion (4.5). It should be
clear that the control constraint admissibility remains
unchanged and, thus, it reduces to requiring set inclu-
sion (3.6). With above construction in mind, we utilize
a constricted constraint set

XG := XF
⋂

XK , (4.13)

and employ stringent overall constraint admissibility
conditions expressed by the following set inclusion

S ⊆ XG. (4.14)

The tighter overall constraint set XG is, indeed, an in-
ner, finitely parameterizable, approximation of the exact
overall constraint set XE .

Corollary 1 Suppose Assumptions 1, 2 and 3 hold, and
consider sets XE and XG specified by (3.7) and (4.13).
Then, the two–sided set inclusion

XG ⊆ XE ⊆ (1− α)−1XG (4.15)

holds true.

We close this subsection by pointing out that, in view of
the preceding construction, the set XG inherits the finite
parameterizability from the state and control constraint
sets X and U. In particular, if the sets X and U are proper
C polytopic sets in Rn and Rm, respectively, the set XG
is also guranteed to be a proper C polytopic set in Rn.

4.3 Guaranteed Generalized Positively Invariant Sets

We now focus on guaranteed generalized positive invari-
ance, in which the relations of (3.9) are tightened to

MTS ⊆ S and S ⊆ XG. (4.16)

In this case, the definition of XG in (4.13) induces a
degree of conservatism when applied to conversion of
conditions (2.10) to tighter, but guaranteed, require-
ments (4.16). Thus, we simply use the term “guaranteed
generalized positively invariant set” for any set S satis-
fying conditions (4.16). This convention applies to both
ordinary and maximal such sets. In this setting, it is
meaningful to explore finitely parameterizable general-
ized positively invariant sets since the set XG inherits the
finite parameterizability from the state and control con-
straint sets X and U. Indeed, the finite parameterizabil-
ity of the tighter overall state constraints XG provides
a gateway for the construction of finitely parameteriz-
able ordinary and maximal guaranteed generalized pos-
itively invariant sets. In particular, the maximal guar-
anteed generalized positively invariant set, say S∞G , can

be computed by using an analogous iteration of the set
recursion (3.11) specified, for all k ∈ Z≥0, by

Sk+1 :=
(
M−1T Sk

)⋂
XG with S0 := XG. (4.17)

Remark 2 As in the case of the maximal exact general-
ized positively invariant set S∞E , the maximal guaranteed
positively invariant set S∞G is the Hausdorff limit of the
set sequences {Sk}k≥0 generated by (4.17). The related
sets Sk are also monotonically nonincreasing (Sk+1 ⊆
Sk) and the corresponding limit is given as in (3.13), i.e.

S∞G =
⋂
k≥0

Sk, (4.18)

and it is the maximal set, w.r.t. set inclusion, satisfying

S =
(
M−1T S

)⋂
XG, (4.19)

which is the relevant analogue of (3.12).

Theorem 1 is applicable relatively directly to the maxi-
mal guaranteed generalized positively invariant set S∞G ,
as summarized by its relevant corollary.

Corollary 2 Suppose Assumptions 1, 2 and 3 hold, and
consider the set sequence {Sk}k≥0 generated by (4.17).
The sets Sk, k ≥ 0 are proper C–sets in Rn such that
for all k ≥ 0 it holds that Sk+1 ⊆ Sk. Furthermore, there
exists finite integer k∗ such that

Sk∗ = Sk∗+1 (4.20)

and, thus, the maximal guaranteed generalized positively
invariant set S∞G is given by

S∞G = Sk∗ . (4.21)

More importantly, estimates of the Hausdorff distance
between the maximal exact and guaranteed generalized
positively invariant sets, S∞E and S∞G , are possible.

Theorem 3 Suppose Assumptions 1, 2 and 3 hold, and
consider the maximal exact and guaranteed generalized
positively invariant sets, S∞E and S∞G , respectively. Then,
the two–sided set inclusion

S∞G ⊆ S∞E ⊆ (1− α)−1S∞G , (4.22)

and the estimate of the Hausdorff distance

HB(S∞G ,S∞E ) ≤ α(1− α)−1%B(S∞G ), (4.23)

hold true.
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We close this subsection by noting that, within our set-
ting, the sets Sk, k ∈ Z≥0 generated by (4.17) preserve
the finite parameterizability of the set XG. Furthermore,
the maximal guaranteed generalized positively invariant
set S∞G is finitely determined and, hence, itself inherits
the finite parameterizability from the set XG. The finite
parameterizability of the sets Sk, k ∈ Z≥0 and their
finitely determined limit S∞G is highly beneficial for the
related set computations.

4.4 Convergence Aspects

Since S∞G ⊆ XG ⊆ X, the guaranteed estimates of the
Hausdorff distance in (4.23) can be obtained by utiliz-
ing either %B(XG) or η = %B(X) instead of %B(S∞G ). In
particular,

HB(S∞G ,S∞E ) ≤ α(1− α)−1η, (4.24)

and, thus, for values of α satisfying

0 < α ≤ α∗ with α∗ := ε(ε+ η)−1 < 1, (4.25)

we have
HB(S∞G ,S∞E ) ≤ ε. (4.26)

In view of Remark 1, the lower bound α∗ of the max-
imal admissible value α restricts the range of values of
ε > 0 and, hence, δ > 0 appearing in Lemma 1 and con-
ditions of Assumption 3. More precisely, for all values of
ε satisfying

0 < ε ≤ ε∗ with ε∗ = α(1− α)−1ηη−1, (4.27)

Lemma 1 guarantees the existence of δ > 0 verify-
ing (4.1) and conditions of Assumption 3 with T = qδ
for some q ∈ Z≥0. Consequently, the above discussion
points out that, for all ε > 0, it is possible to select
scalars δ > 0 and α ∈ (0, α∗) so that the relations (4.1)
(with 0 < ε < ε∗) and conditions of Assumption 3 hold
true simultaneously while guaranteeing a–priori that
the Hausdorff distance between the maximal exact and
guaranteed generalized positively invariant sets, S∞E
and S∞G is as small as desirable (and without having to
compute explicitly any of these sets).

Theorem 4 Suppose Assumption 1 holds. Then, for all
ε > 0, there exist α ∈ [0, 1) and δ > 0 satisfying Assump-
tions 2 and 3 and ensuring that the Hausdorff distance
between the maximal exact and guaranteed generalized
positively invariant sets, S∞E and S∞G , is smaller than ε,
i.e. relation (4.26) holds true.

5 Discussion

5.1 Role of parameters

The sampling period T is, in this paper, considered to
be fixed. Clearly, the rate at which the controls are im-

plemented and controlled dynamics are sampled is very
important. Naturally, the faster sampling the higher im-
pact of the control actions and the higher the quality
of the controlled dynamics (particularly so for naturally
unstable systems). The sampling rate affects both the
maximal exact and guaranteed generalized positively in-
variant sets S∞E and S∞G . However, the related depen-
dence, being a research topic in its own right, does not
lie within the intended scope of this note.

Naturally, the larger value of the subsampling period δ
the less complex the representation of the constraint set
XF . In fact, the set XF admits the simplest representa-
tion for δ = T . Intuitively, this might lead to the sim-
plest representation of the maximal guaranteed gener-
alized positively invariant set S∞G . On the other hand,
the smaller values of δ lead to smaller values of α and,
thus, the better the quality of the approximation in the
sense of the Hausdorff distance. Thus, the value of δ can
be selected according to the preference for the quality
or the simplicity of the approximation of the maximal
exact generalized positively invariant set S∞E . When the
values of T and δ are selected and fixed, the correspond-
ing value of α can be evaluated with relative ease. In
particular, it suffice to set β = α(1− α)−1 and evaluate
the smallest value of a non negative scalar β,

β0 := min
β
{β ∈ R≥0 : ∀k ∈ Zq−1, ∀τ ∈ (0, δ),

Akδ(Mτ − I)X ⊆ βX}, (5.1)

by using the standard numerical computations for opti-
mal control. Indeed, the smallest value of α ensuring the
satisfaction of conditions (4.9) takes then the following
simple form

α0 := β0(1 + β0)−1. (5.2)

Clearly, α0 is a function of T and δ and, for all finite
values of T and δ, α0 ∈ [0, 1) since 0 ≤ β0(1+β0)−1 < 1.

Finally, the value of α affects the size of the constraint
set XF and, thus, the size of the maximal guaranteed
generalized positively invariant set S∞G . The smaller val-
ues of α yield the higher quality of the approximations
in the sense of the Hausdorff distance. Naturally, smaller
values of α might require smaller values of δ or T to be
utilized. On the other hand, the bigger values of α allow
potentially for the utilization of bigger values of δ and,
thus, can lead to simpler maximal guaranteed general-
ized positively invariant sets S∞G , which are, however,
poorer approximations of the maximal exact generalized
positively invariant set S∞E . When the values of T and
α ∈ (0, 1) are selected and fixed, the corresponding value
of δ can be also evaluated with relative ease. In particu-
lar, it suffices to determine the smallest integer q via

q0 := min
r
{r ∈ N : ∀k ∈ Zr−1, ∀τ ∈ (0, T r−1),

Akδ(Mτ − I)(1− α)X ⊆ αX}, (5.3)
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by using the standard numerical computations for op-
timal control and a direct integer–valued bisection over
r. Indeed, the largest value of δ satisfying Assumption 2
and ensuring the satisfaction of conditions (4.9) takes
then the following simple form

δ0 := Tq0
−1
. (5.4)

Clearly, δ0 is a function of T and α and, as already com-
mented on, for all finite values of T and α ∈ (0, 1), the
sufficiently small value of δ is guaranteed to exist under
our mild assumptions.

5.2 Computational Aspects

A fundamental aspect for underlying exact and guar-
anteed set computations is the ability to effectively im-
plement the set iterations specified in (3.11) and (4.17),
respectively. In this sense, the issues of paramount im-
portance are to understand the meaning of “computing
a set” as well as to utilize in a smart manner explicit or
implicit representations of the related set iterates. The
standard approaches [4,5,8] to set computations demand
that the set iterates Sk are computed explicitly at every
step of the corresponding set recursions. These standard
approaches to set computations can be rendered more
or less efficient but are nevertheless limited to problems
of relatively small dimensions.

A computationally more convenient approach is to em-
ploy implicit representations of the set iterates Sk, and
to utilize an incremental form of the set recursions (3.11)
and (4.17), which we now propose. To this end, we ob-
serve that, for all k ∈ Z≥0,

Sk+1 = {x ∈ Rn : Mk+1
T x ∈ S0,

Mk
Tx ∈ S0, . . . , MTx ∈ S0, x ∈ S0}

= {x ∈ Rn : Mk+1
T x ∈ S0}

⋂
Sk, (5.5)

where S0 = XE in the case of the set iteration (3.11)
and S0 = XG in the case of the set iteration (4.17). With
above relations (5.5) in mind, the incremental form of
the related set iterations (3.11) and (4.17) is obtained
by letting, for all k ∈ Z≥0,

Sk+1 = ∂Sk+1

⋂
Sk with

∂Sk+1 := {x ∈ Rn : Mk+1
T x ∈ S0}, (5.6)

and where, as above, S0 = XE in the case of the set it-
eration (3.11) and S0 = XG in the case of the set itera-
tion (4.17), and ∂S0 = {x ∈ Rn : x ∈ S0} = S0.

The incremental form of the related set iterations allows
for an alternative and equivalent form of the test for the

finite determination of the maximal guaranteed and ex-
act generalized positively invariant sets S∞G and S∞E , de-
noted in the remainder of this subsection by S∞ for ty-
pographical convenience. Namely, by inspection of (5.6),
we have

Sk = Sk+1 ⇔ Sk ⊆ ∂Sk+1, (5.7)

and thus testing whether Sk = Sk+1, which is equivalent
to testing Sk ⊆ Sk+1 since Sk+1 ⊆ Sk is true by con-
struction, can be also equivalently performed by testing
Sk ⊆ ∂Sk+1. Furthermore, it is possible to obtain suf-
ficient conditions for guaranteeing Sk = Sk+1 without
having to compute explicitly or implicitly any of sets Sk
excluding S0. To this end, recall that Sk+1 ⊆ Sk for all
k ∈ Z≥0 so that

S0 ⊆ ∂Sk+1 ⇒ Sk ⊆ ∂Sk+1 and, in turn,

S0 ⊆ ∂Sk+1 ⇒ Sk = Sk+1 = S∞. (5.8)

Since in view of (5.6), Sk =
⋂
j∈Zk

∂Sj , the two most
important consequences from the theoretical and com-
putational points of view are summarized by

Sk ⊆ ∂Sk+1 ⇔ S∞ = Sk =
⋂
j∈Zk

∂Sj , and

S0 ⊆ ∂Sk+1 ⇒ S∞ = Sk =
⋂
j∈Zk

∂Sj . (5.9)

The representation of the set S∞ =
⋂
j∈Zk

∂Sj can take
implicit or explicit form. In the former case, the im-
plicit representation of each of the sets ∂Sj and the in-
tersection defining set S∞ is obtained. Likewise, in the
latter case, the explicit representation of each of the
sets ∂Sj and the intersection defining set S∞ is con-
structed. All above considerations, in conjunction with
already mentioned finite parameterizability aspects, can
be directly utilized for the related set computations, as
demonstrated next by our illustrative example.

5.3 Illustrative Example

Our illustrative example is a simple two dimensional
sampled–data system of (2.1) for which

A = 2π

(
0 1

−1 0

)
and B =

(
1

1

)
, (5.10)

while the state and control constraints of (2.7) are proper
C–polytopic sets

X = {x = (ξ1, ξ2) ∈ R2 : −1 ≤ ξ1 ≤ 1, −1 ≤ ξ2 ≤ 1} and

U = {u ∈ R : −1 ≤ u ≤ 1}. (5.11)

Two values of the sampling period T are considered, i.e.
T = 4−1s and T = 8−1s, and in each case the corre-
sponding linear state feedback control gain K is com-
puted as the solution to a discrete time infinite horizon
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Fig. 1. The variety of illustrative constraint sets and corresponding maximal guaranteed generalized positively invariant sets.
Color key: � X, � XD := X ∩ XK , � XG and � S∞

G . (Note: S∞
G ⊆ XG ⊆ XD ⊆ X.)

linear quadratic regulator problem for the system ma-
trices (AT , BT ) and cost weights Q = I and R = 1. Four
values of the subsampling period δ, obtained by setting
δ = Tq−1 with q ∈ {4, 16, 64, 256}, are considered for
each of two sampling periods T = 4−1s and T = 8−1s.
The related values α0 = α0(T, δ) computed via (5.1)
and (5.2) are reported in Table 1 for these eight cases.
As it can be seen, α0 = α0(T, δ) decreases as δ decreases

Case T q δ α0

1 0.25 4 0.0625 0.35743

2 0.25 16 0.015625 0.12269

3 0.25 64 0.00390625 0.033808

4 0.25 256 0.0009765625 0.0086722

5 0.125 4 0.03125 0.22149

6 0.125 16 0.0078125 0.06653

7 0.125 64 0.001953125 0.017508

8 0.125 256 0.00048828125 0.0044353

Table 1
The optimal values of α0(T, δ).

(i.e., as number of time points at which state constraints
are invoked is increased). In fact, for both sampling pe-
riods T = 4−1s and T = 8−1s invoking state constraints
at 256 uniformly spaced intersample time points leads to
values of α0 < 0.01. This, in turn, ensures that the maxi-
mal guaranteed generalized positively invariant sets S∞G
are close approximations of the maximal exact general-
ized positively invariant sets S∞E in the sense of the Ha-

sudorff distance, the values of which are guaranteed to
be less than 0.01 in absolute terms and less than 1% in
relative terms (both w.r.t. usual ∞ vector norm). Fig-
ure 1 provides additional illustration of the interplay be-
tween the values of δ and α and the related maximal
guaranteed generalized positively invariant sets S∞G . The
sub–figures in the left hand column illustrate cases 1 and
3, while the sub–figures in the right hand column illus-
trate cases 5 and 7 from Table 1. In all sub–figures, the
state constraints X, the discrete time admissibility con-
straints XD = X ∩ XK , the sampled–data guaranteed
admissibility constraints XG and the maximal guaran-
teed generalized positively invariant sets S∞G are shown
using different levels of gray–scale shading as detailed by
the provided color key. As already asserted, the smaller
values of δ the smaller values of α and the better ap-
proximation of the maximal exact generalized positively
invariant set. In all cases, finite paramaterizability and,
in fact, proper C–polytopic structure of all the involved
sets is preserved. As expected and as it can be observed
in the Figure, the quality of the related maximal guar-
anteed generalized positively invariant sets is attained
at the cost of the complexity of their representations.

Figure 2 depicts the involved sets for case 4 specified
in Table 1. For this particular setting, the values of the
sampling and subsampling periods are T = 4−1 and
δ = T256−1 = 1024−1. The corresponding value of
α0 = 0.0088 guarantees that the Hausdorff distance be-
tween the maximal guaranteed and exact generalized
positively invariant sets S∞G and S∞E is less than 0.0089 in
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Fig. 2. The constraint sets and corresponding maximal guaranteed generalized positively invariant set for Case 4 of Table 1.
Color key: � X, � XD := X ∩ XK , � XG and � S∞

G . (Note: S∞
G ⊆ XG ⊆ XD ⊆ X.)

absolute terms and less than 0.9% in relative terms. The
figure also shows the sequences of sets {Mk

TS∞G }k∈Z≥0
.

The terms of this set sequence spiral in towards the ori-
gin while converging to it, and are depicted in different
layers of gray–scale shading (the darker shade the larger
k). A sample of continuous time trajectory of the con-
sidered sampled–data linear dynamics is shown in white
using solid line. The related discrete time trajectory is
shown in white by filled circles, while the related linear
interpolation of this trajectory is shown in white using
dashed line. All these trajectories spiral in towards the
origin, while converging to it as time goes to ∞. As ex-
pected in view of our construction, the discrete time tra-
jectory lies entirely within the maximal guaranteed gen-
eralized positively invariant set S∞G , and it converges to
0. In fact and as a direct inspection of the figure con-
firms, it holds that xkT ∈ Mk

TS∞G . On the other hand
and as expected, the continuous time trajectory leaves
the maximal guaranteed generalized positively invariant
set S∞G during sampling intervals. It should be observed
that the actual continuous time trajectory also leaves
the set XG for periods of time (i.e., during some sub-
sampling intervals (kδ, (k + 1)δ)) as well as the control
constraint admissibility set XK . However, it never leaves
the state constraint set X and it also belongs to the set
XK at the sampling instances when the related control
actions are implemented. Finally, a direct inspection of
the figure does reveal that the corresponding continuous
and discrete time trajectories (more precisely, the lin-
ear interpolation of the latter one) differ substantially
highlighting once again inadequacy of the utilization of
simple discrete time positive invariant sets.

6 Closing Remarks

We have introduced topologically flexible and general-
ized positive invariance notions within the sampled–data
setting. Both the exact and guaranteed generalized pos-
itive invariance notions have been proposed. The former
notion is theoretically “optimal”, while the latter notion
is approximate but it enhances significantly finite pa-
rameterizability and practical computability. The limit-
ing behaviour and computational aspects have also been

discussed, and the notions were illustrated by means of
an academic example.

The work reported in this paper opens up a number of
questions and lines for future research. First and fore-
most, the extension of the developed notions to general
setting of constrained sampled–data nonlinear systems
is relatively direct from the theoretical point of view,
but possibly challenging from the computational point
of view. Secondly, it would be of much interest to deploy
our generalized notions to study ordinary and maximal
control and robust control invariant sets in conjunction
with efficient and sampling–based computational tech-
niques introduced in [17]. Another relevant aspect would
be a more detailed study of computational aspects in
conjunction with computational approaches considered
in [15, 16, 18]. The derivation of notions allowing for
classical robustness within our framework, as initiated
in [19], is also of much interest as well as for robustness
towards numerical approximations and sampling related
imprecisions, as initiated in [17,18].

Within the context of the present manuscript, there are
also several possible extensions. First point is utiliza-
tion of an alternative version of conditions in (4.9). We
have identified a relaxed, but somewhat computation-
ally more complex, form of this main set of conditions;
it reads as

∀k ∈ Zq−1, ∀τ ∈ (0, δ),

Mkδ+τ

 ⋂
j=0,1,...,k

M−1jδ X

 ⊆ (1− α)−1X,

(6.1)

and the benefits of its use are subject of an ongoing inves-
tigation. Naturally, a more sophisticated modifications
of the state constraints (instead of simple scaling em-
ployed herein for convenience) can be developed and are
also being considered. Finally, in this paper we have em-
ployed separate but uniform sampling and subsampling
strategies. It might be beneficial for a number of reasons
to allow for adaptive sampling and subsampling, i.e. use
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of adaptive time partitions for dynamics and controls as
well as adaptive subpartitions for state constraints. This
aspect is also under current investigation.

APPENDIX I: Proof of Theorem 1

First, we establish that the set XE is a proper C–set in
Rn. By its definition in (3.3), the set XS is closed and
convex. But, 0 ∈ XS ⊆ X so XS is guaranteed to be a C–
set in Rn. However, since X is a proper C–set in Rn, for
each t ∈ [0, T ] there is ball B of radius rt > 0 centered
at the origin such that MtrtB ⊆ X. Thus, letting r :=
mint{rt : t ∈ [0, T ]} it follows that r > 0 and, in turn,
rB ⊆ rtB ⊆ M−1t X for all t ∈ [0, T ) ⊆ [0, T ]. Thus,
rB ⊆ XS =

⋂
t∈[0,T )M

−1
t X and the set XS is, in fact, a

proper C–set in Rn. Now, the set U is a proper C–set in
Rn so that XK is guaranteed to be a closed, convex set
in Rn that contains the origin in its interior. Thus, the
set XE is a proper C–set in Rn.

Next, we establish that the sets Sk, k ∈ Z≥0 are proper
C–sets in Rn. Now, suppose that Sk is a proper C–set for
some k ∈ Z≥0. Then, the set M−1T Sk is guaranteed to be
a closed, convex set in Rn that contains the origin in its
interior. Thus, since XE is a proper C–set in Rn, the set
Sk+1 = (M−1T Sk)

⋂
XE is a proper C–set in Rn. Since

S0 = XE is a proper C–set in Rn, the claimed fact that
the sets Sk, k ∈ Z≥0 are proper C–sets in Rn follows by
induction.

Next, Sk+1 ⊆ Sk yields that M−1T Sk+1 ⊆ M−1T Sk, and,

in turn, (M−1T Sk+1)
⋂
XE ⊆ (M−1T Sk)

⋂
XE . Thus,

Sk+2 ⊆ Sk+1. Since S1 = (M−1T XE)
⋂
XE ⊆ XE = S0,

the claimed facts that Sk+1 ⊆ Sk for all k ∈ Z≥0 follow
by induction.

A generalized variant of [10, Theorem 4.1.] yields the
existence of a finite integer such that Sk∗ = Sk∗+1. So,
only an outline of the proof is provided. As shown in [13],
since MT is strictly stable there is a symmetric proper
C–set in Rn , say L, such that MTL ⊆ λL for some
λ ∈ [0, 1). Furthermore, since XE is a proper C–set in
Rn, there are two finite and strictly positive scalars, say
η and η, such that

ηL ⊆ XE ⊆ ηL.

By strict stability of MT , there is a finite k∗ ∈ Z≥0
such that Mk

T ηL ⊆ ηL. We note that k∗ is guaranteed
to be less or equal to the smallest integer k such that
λk ≤ ηη−1. In turn,

ηL ⊆M−k
∗

T ηL.

In view of set iteration specified in (3.11), this implies
that Sk∗ = (M−1T Sk∗)

⋂
XE = Sk∗+1.

Finally, Sk∗+1 = Sk∗ implies that Sk∗+j = Sk∗ for all
j ∈ Z≥0 and, in turn, S∞E = Sk∗ .

APPENDIX II: Proof of Proposition 1

First, by definition of At, we have

Akδ+τ = e(kδ+τ)A = ekδAeτA = AkδAτ .

Second, by definition of Bt, we have

Bkδ+τ =

(∫ kδ+τ

0

eσAdσ

)
B

=

(∫ kδ

0

eσAdσ +

∫ kδ+τ

kδ

eσAdσ

)
B

=

(∫ kδ

0

eσAdσ + ekδA
∫ τ

0

eσAdσ

)
B

=

(∫ kδ

0

eσAdσ

)
B + ekδA

(∫ τ

0

eσAdσ

)
B

= Bkδ +AkδBτ .

Third, by definition of Mt, we have

Mkδ+τ = Akδ+τ +Bkδ+τK = AkδAτ +BkδK +AkδBτK

= Akδ −Akδ +BkδK +Akδ(Aτ +BτK)

= (Akδ +BkδK) +Akδ(Aτ +BτK − I)

= Mkδ +Akδ(Mτ − I),

which proves that the claimed relations are affirmative.

APPENDIX III: Proof of Theorem 2

First, relation (4.10) verifies that

XS ⊆ (1− α)−1XF ,

as asserted in (4.11). So, it suffices to verify relation (4.7).
To this end, we observe that the conditions

∀t ∈ [0, T ), MtS ⊆ X

equivalently read as

∀k ∈ Zq−1, ∀τ ∈ [0, δ), Mkδ+τS ⊆ X.

By construction, since α ∈ [0, 1) and X is a proper C–
set, we have that the relations

∀k ∈ Zq−1, MkδS ⊆ (1− α)X ⊆ X
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are guaranteed. Now, by Proposition 1, for all k ∈ Zq−1
and all τ ∈ (0, δ),

Mkδ+τS = [Mkδ +Akδ(Mτ − I)]S.

Since (L1 + L2)X ⊆ L1X ⊕ L2X is true for arbitrary
matrices L1 and L2 of compatible dimensions and a set
X , it further follows that

[Mkδ +Akδ(Mτ − I)]S ⊆MkδS ⊕Akδ(Mτ − I)S.

Since S ⊆ (1− α)X, it follows that

MkδS⊕Akδ(Mτ − I)S ⊆MkδS⊕Akδ(Mτ − I)(1−α)X.

But, by construction, MkδS ⊆ (1 − α)X and, by (4.9),
we have Akδ(Mτ − I)(1− α)X ⊆ αX. Thus,

MkδS ⊕Akδ(Mτ − I)(1− α)X ⊆ (1− α)X⊕ αX = X.

Hence,

∀k ∈ Zq−1, ∀τ ∈ (0, δ), Mkδ+τS ⊆ X.

The claimed facts are verified and the proof is concluded.

APPENDIX IV: Proof of Corollary 1

By Proposition 1, XF ⊆ XS ⊆ (1− α)−1XF , and, thus,

XF
⋂

XK ⊆ XS
⋂

XK ⊆ (1− α)−1XF
⋂

XK .

Since α ∈ [0, 1) and XK is guranteed to be a convex
set in Rn that contains the origin, it follows that XK ⊆
(1 − α)−1XK and, in turn, (1 − α)−1XF

⋂
XK ⊆ (1 −

α)−1XF
⋂

(1−α)−1XK = (1−α)−1 (XF
⋂
XK). Hence,

XF
⋂

XK ⊆ XS
⋂

XK ⊆ (1− α)−1
(
XF
⋂

XK
)
,

or, equivalently,

XG ⊆ XE ⊆ (1− α)−1XG,

as claimed.

APPENDIX V: Proof of Theorem 4

When α = 0 the claim is obvious, so we focus on the case
α ∈ (0, 1). By Corollary 1, XG ⊆ XE ⊆ (1− α)−1XG so
that, by construction,

S∞G ⊆ S∞E ⊆ X∞,

where X∞ is the maximal positively invariant set for the
dynamics x+ = MTx and constraint set (1 − α)−1XG.

Thus, it suffices to prove that X∞ = (1− α)−1S∞G . We
will assume that this is not the case and reach contra-
diction. Before proceeding, observe that, by construc-
tion, all three sets S∞G , S∞E and X∞ are proper C–sets.
Let us assume that X∞ is not equal to (1 − α)−1S∞G .
The set (1 − α)X∞ satisfies (1 − α)X∞ ⊆ XG and
MT (1− α)X∞ ⊆ (1− α)X∞. Thus, (1− α)X∞ is posi-
tively invariant set for the dynamics x+ = MTx and con-
straint set XG. But S∞G is the maximal positively invari-
ant set for the dynamics x+ = MTx and constraint set
XG. Thus, (1−α)X∞ ⊆ S∞G and, as both sets are proper
C–sets, X∞ ⊆ (1−α)−1S∞G . But, (1−α)−1S∞G satisfies
(1 − α)−1S∞G ⊆ (1 − α)−1XG and MT (1 − α)−1S∞G ⊆
(1 − α)−1S∞G and, thus, (1 − α)−1S∞G is positively in-
variant set for the dynamics x+ = MTx and constraint
set (1− α)−1XG. The desired contradiction is revealed,
as the set (1−α)−1S∞G refutes the maximal positive in-
variance of X∞. Consequently, it follows that these sets
are equal, i.e. X∞ = (1− α)−1S∞G , so that, as asserted,

S∞G ⊆ S∞E ⊆ (1− α)−1S∞G .

Since S∞G is a proper C–set, it follows that

(1− α)−1S∞G = S∞G ⊕ α(1− α)−1S∞G ,

so that

S∞G ⊆ S∞E ⊆ S∞G ⊕ α(1− α)−1S∞G .

Thus, as claimed,

HB(S∞G ,S∞E ) ≤ α(1− α)−1%B(S∞G ).

APPENDIX VI: Proof of Theorem 4

The claim follows from the discussion preceding it.
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