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Abstract. We address sampled–data nonlinear Model Predictive Con-
trol (MPC) schemes, in particular we address methods to e�ciently and
accurately solve the underlying continuous-time optimal control prob-
lems (OCP). In nonlinear OCPs, the number of discretization points is
a major factor a↵ecting the computational time. Also, the location of
these points is a major factor a↵ecting the accuracy of the solutions. We
propose the use of an algorithm that iteratively finds the adequate time–
mesh to satisfy some pre–defined error estimate on the obtained trajec-
tories. The proposed adaptive time–mesh refinement algorithm provides
local mesh resolution considering a time–dependent stopping criterion,
enabling an higher accuracy in the initial parts of the receding horizon,
which are more relevant to MPC. The results show the advantage of the
proposed adaptive mesh strategy, which leads to results obtained approx-
imately as fast as the ones given by a coarse equidistant–spaced mesh
and as accurate as the ones given by a fine equidistant–spaced mesh.

Keywords: Predictive control, Nonlinear systems, Optimal control, Real–
time optimization, Continuous–time systems, Adaptive algorithms, Time–
mesh refinement, Sampled-data systems.

1 Introduction

This article discusses an adaptive time–mesh refinement algorithm to e�ciently
and accurately solve optimal control problems (OCP) and proposes its use in
Model Predictive Control (MPC) schemes.

In the last decade, most of the MPC literature has been using discrete–
time models (e.g. [12, 14, 27]). However, some of the earlier theoretical works on
nonlinear MPC used continuous–time models (see [4, 9, 16, 17]). Recently, [13]
proposed a multi–step MPC scheme, which despite still being a discrete–time
scheme, has the optimization and feedback updates done at possibly di↵erent
time instants. The authors show that such technique can lower the computational
load while maintaining stability and quantifiable robust performance estimates.
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In [21], some of the authors that vastly contributed to spread the use of discrete–
time MPC (c.f. [27]) show that a continuous–time method is significantly more
e�cient than standard discrete–time methods when solving constrained linear
quadratic problems.

To implement MPC schemes, some form of discretization, or at least a finite
parameterization, is eventually needed to solve the OCP. Nevertheless, there are
several advantages in maintaining a continuous–time model until later stages.
In addition to being able to obtain more accurate solution to OCPs faster, it
might be essencial in nonlinear systems that can rapidly change behavior in some
short time intervals or even when there is a discontinuity at some critical instant
(e.g.impulsive control [10, 23]). Also, path-following MPC strategies are more
complex to implement in discrete-time than in sampled-data schemes (compare
[24, 25] with [3, 28]).

We also argue that the time is ripe to start using continuous–time MPC,
even in applications [28, 8]. Many theoretical questions of using sampled–data
systems are well documented in the literature ([5–7, 11, 15, 26]) and there are
now several ready available software packages to solve nonlinear OCP [18].

In OCP solvers using direct collocation methods, the control and the state
are discretized in an appropriately chosen mesh of the time interval. Then, the
continuous–time OCP is transcribed into a finite–dimensional nonlinear pro-
gramming problem (NLP) which can be solved using widely available soft-
ware packages [18]. Most frequently, in the discretization procedure, regular
time meshes having equidistant spacing are used. However, in some cases, these
meshes are not the most adequate to deal with nonlinear behaviours. One way
to improve the accuracy of the results, while maintaining reasonable computa-
tional time and memory requirement, is to construct a mesh having di↵erent
time steps. The best location for the smaller steps sizes is, in general, not known
a priori, so the mesh is refined iteratively. In a mesh–refinement procedure the
problem is solved, typically, in an initial coarse uniform mesh in order to cap-
ture the basic structure of the solution and of the error. Then, this initial mesh
is repeatedly refined according to a chosen strategy until some stopping crite-
rion is attained. Several mesh refinement methods employing direct collocation
methods have been described in the recent years [1, 2, 22, 29].

In this paper, we adapt and apply to an MPC context an adaptive time–mesh
refinement algorithm to solve nonlinear OCP [20]. The algorithm computes it-
eratively an adequate time-mesh that satisfies some pre–defined error estimates
on the obtained trajectories. The refinement method used here (a) permits sev-
eral levels of refinement, obtaining a multi–level time–mesh in a single iteration.
(b) it also permits di↵erent refinement criteria – the relative error of the primal
variables, the relative error of the dual variables or a combination of both; (c) it
considers distinct criteria for refining the mesh and for stopping the refinement
procedure – the refinement strategy can be driven by the information given by
the dual variables and it can be stopped according to the information given by
the primal variables. As described in [20], there are advantages in choosing the
error of the adjoint multipliers as a refinement criterion. To decrease the over-
all computational time, the solution computed in the previous iteration is used
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as a warm start in the next one, which proved to be of major importance to
improve computational e�ciency. This adaptive strategy leads to results with
higher accuracy and yet with lower overall computational time, when compared
to results obtained by meshes having equidistant spacing, as is the case when
using discrete–time models from the beginning.

In MPC context, the prediction can be interpreted in the sense of planning.
When we make plans for the future, we establish planning strategies with detail
level depending on the prediction horizon. Combining this idea with the refine-
ment strategy, we obtain an adaptive time–mesh refinement algorithm which
generates meshes with higher concentration of node points in the beginning of
the prediction horizon and less concentration of node points in the end of the
same interval, enforcing the idea of having more nodes point where they are
needed and keeping a low overall number of node points. This is an important
issue, because we want to increase the accuracy of the solution without compro-
mising CPU times.

2 The Adaptive Mesh Refinement Algorithm for Optimal
Control Problems

Let us consider the optimal control problem :

P(t0, tf ) : Minimise

Z tf

t0

L (t,x(t),u(t)) dt+G(x(tf )) (1)

subject to ẋ(t) = f(t,x(t),u(t)) a.e. t 2 [t0, tf ] , (2)

x(t0) = x0 , (3)

x(tf ) 2 X1 ⇢ Rn
, (4)

x(t) 2 X ⇢ Rn a.e. t 2 [t0, tf ] , (5)

u(t) 2 U ⇢ Rm a.e. t 2 [t0, tf ] , (6)

where x : [t0, tf ] ! Rn is the state, u : [t0, tf ] ! Rm is the control and t 2 [t0, tf ]
is time. The functions involved comprise the running cost L : [t0, tf ]⇥Rn⇥Rm !
R, the terminal cost G : Rn ! R and the system dynamics f : [t0, tf ]⇥Rn⇥Rm !
Rn.

As stated in [19] and [20], the adaptive mesh refinement process starts by
discretizing the time interval [t0, tf ] in a coarse mesh used to solve the NLP
problem associated to the OCP in order to catch the main structure of the
solution. According to some refinement criteria, the mesh is divided in K 2 N
mesh intervals

Sk = [⌧k�1, ⌧k[ , k = 1, . . . ,K,

where (⌧0, . . . , ⌧K) coincide with nodes. These mesh intervals Sk form a partition
of the time interval while the mesh nodes have the property ⌧0 < ⌧1 < . . . < ⌧K .

The subintervals Sk that verify the refinement criteria are refined taking
into account di↵erent levels of refinement in a single iteration, i.e., they are
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divided into smaller subintervals according to user–defined levels of refinement
"̄ = ["1, "2, . . . , "m]. The procedure is repeated until the stopping criterion is
achieved. A subinterval Sk,j is at the j

th level of refinement if

Sk,j = {t 2 Sk : "(t) 2 ["j , "j+1[} (7)

for j = 1, . . . ,m. This procedure adds more node points to the subintervals in
higher levels of refinement, corresponding to higher errors, and it adds less node
points to those in lower refinement levels (Fig. 1). By defining several levels of
refinement, we get a multi–level time–mesh in a single iteration.

t0 tftime

lo
g(
"
)

level j = 1

level j = m

Fig. 1: Illustration of the multi–level adaptive time–mesh refinement strategy.

3 The Model Predictive Control Framework

Consider a sampling step � > 0, the prediction horizon T and a sequence of
sampling instants {ti}i�0 with ti+1 = ti + �. The sampled-data MPC algorithm
follows the receding horizon strategy [9]:

1. Measure state of the plant xti ;
2. Determine ū : [ti, ti + T ] ! Rm solution to the OCP P(ti, ti + T ) (1)-(6).
3. Apply the control u⇤(t) := ū(t) to the plant in the interval t 2 [ti, ti + �],

disregarding the remaining control ū(t), t > ti + �;
4. Repeat this procedure for the next sampling time instant ti + �.

We extend the adaptive time–mesh refinement algorithm described in [20] in
order to allow di↵erent refinement levels according to some partition of the time
domain. This extension is of relevance in the MPC context, since it is desirable
to have a solution with higher accuracy in the initial part of the horizon.

Motivation. The time interval t 2 [t0, tf ], the prediction horizon T , and the sam-
pling step � > 0, satisfy � << T << tf � t0. When applying the MPC procedure
to solve an OCP, at each time instant ti we compute the solution in [ti, ti + T ]
but we just implement the open–loop control until ti + �. Therefore, taking into
account the planning strategy discussed above, it would be an improvement if
we have an adaptive time–mesh able to cope this feature, i.e., a time–mesh that
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is highly refined in the lower limit of the time interval [ti, ti + T ] and it is coarser
in the upper limit of the same interval. Then, we would implement the control
on the time interval [ti, ti + �] computed with high accuracy in a refined mesh.
For the remaining time interval we have an estimate of the solution.

Time–Mesh Refinement Algorithm. In this extension, we also consider a time–
dependent stopping criterion for the mesh refinement algorithm with di↵erent
levels "̄

x

(t). Instead of having a fixed stopping criterion "

max
x

, now we have a
time–dependent "̄

x

(t) stopping criterion which sets di↵erent levels of accuracy
for the solution, along the time domain. For example, the time–dependent levels
of refinement can be defined as

"̄

x

(t) =

8

>

>

>

<

>

>

>

:

"

max
x

, t 2 [ti, ti + �1T ]

↵1"
max
x

, t 2 ]ti + �1T, ti + �2T ]

. . .

↵j"
max
x

, t 2 ]ti + �jT, ti + T ]

where 1 < ↵1 < . . . < ↵j  "

max
x

and 0 < �1 < �2 < . . . < �j < 1 are
user–defined scalars.

This procedure adds more node points to the subintervals that are in lower
levels of the stopping criterion for the refinement procedure, corresponding to
time instants close to the initial time as illustrated in Fig. 2.

t0 tftime

lo
g(
"
(t
))

level 1

level j

Fig. 2: Illustration of the extended (time–dependent) time–mesh refinement
strategy

Refinement and Stopping Criteria. In order to proceed with the mesh refinement
strategy, we have to define some refinement criteria and a stopping criterion. We
consider as refinement criteria: the estimate of the relative error of the adjoint
multipliers (dual variables). For the stopping criterion, we consider a threshold
for the relative error of the trajectory ||"

x

||1.

Warm Start. Since we are solving a sequence of open–loop OCPs, to decrease the
CPU time, when going from the problem in [ti, ti + T ] to the one in [ti + �, ti + T

+�], the solution of the previous previous is used as a warm start for the problem.
To create this warm start, the solution obtained in [ti, ti + T ] is projected in the
new mesh in [ti + �, ti + T + �] using the cubic Hermite interpolation.
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Model Predictive Control coupled with the Extended Algorithm. We start the
MPC procedure in the typical way but considering an adaptive mesh refine-
ment strategy. We descritise the time interval [t0, tf ] and we solve our OCP in
open–loop. Then, we implement the control in the first sampling interval. When
starting the next MPC step, we apply the time–mesh refinement strategy in or-
der to find the best mesh suited to the solve the OCP in the second sampling
interval (Fig. 3). In the MPC algorithm, step 2 is modified as follows:

2. (a) Select the intervals Sk,j to be refined according to the time–dependent
levels of refinement "̄

x

(t) and generate a new time grid;
(b) Determine ū : [ti, ti + T ] ! Rm solution to the OCP P(ti, ti+T ) (1)-(6),

in the new time-grid;

0
T

ti ti + � ti + 2�

�

past

current time

prediction horizon

x̄

x

⇤

past feedback u

⇤ optimal control sequence

Fig. 3: Time–mesh refinement algorithm for MPC

4 Application: Parking Manoeuvres

In order to apply our MPC strategy, let us consider the car–like system problem
with t 2 [0, 20], in seconds, x(t) = (x(t), y(t), (t)) and u(t) = (u(t), c(t)).
Aiming minimum energy, this problem (PCP) can be stated as:

Minimise

Z 20

0
u

2(t)dt (8)

subject to ẋ(t) = u(t) cos( (t)) a.e. t 2 [0, 20]

ẏ(t) = u(t) sin( (t)) a.e. t 2 [0, 20] (9)

 ̇(t) = u(t) c(t) a.e. t 2 [0, 20]

x(0) = x0 , (10)

x(20) 2 X1, (11)

x(t) 2 X , 8t 2 [t0, tf ] (12)

� 1  u(t)  1 a.e. t 2 [0, 20] (13)

� 0.7  c(t)  0.7 a.e. t 2 [0, 20] (14)
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where u(t) is the speed and c(t) is the curvature. The end–point constraints are
specified as

x0 =(x0, y0,  0) = (1.5, 3.5, ⇡/2) (15)

X1 =
n

(x, y, ) : (x� xf )
2 + (y � yf )

2 + ( �  f )
2  r

2
o

(16)

where r

2 = 0.1, and xf = (xf , yf ,  f ) = (4, 0, 0) is a user–defined target point.
Moreover, we define a pathwise state constraint (see Fig. 4) set X is the set of
points (x, y,  ) satisfying

8

>

<

>

:

�M  y  M if x 2 [x0, x
⇤]

�b (x)  y  b (x) if x 2 [x⇤
, x

?]

�m  y  m if x 2 [x?
, xf ]

(17)

where x

⇤ = 2, x? = 3, y? = �1.5,M = 4 and

b (x) = y

? �
p

⇢

2 � (x� x

?)2 , ⇢ = |x? � x

⇤| .

x0 x

⇤
xfx

?

y

?

�y

?

M

�M

m

�m

Fig. 4: Pathwise state constraints (17) for (PCP)

In order to test the MPC algorithm, we start by introducing some perturba-
tions on the system dynamics test–plant:

8

>

<

>

:

ẋ(t) = u(t) (1 + �u) cos( (t))

ẏ(t) = u(t) (1 + �u) sin( (t))

 ̇(t) = u(t) (1 + �u) c(t) (1 + �c)

. (18)

We consider � = 2 s which means that we will solve a sequence of 10 open–
loop OCPs and we define �u = �c = 0.1. We also set "max

x

= 5⇥ 10�5

and

"̄

x

(t) =

8

>

<

>

:

"

max
x

, t 2 [ti, ti + 0.1T ]

10⇥ "

max
x

, t 2 ]ti + 0.1T, ti + 0.3T ]

103 ⇥ "

max
x

, t 2 ]ti + 0.3T, ti + T ]



8 L.T. Paiva, F.A.C.C. Fontes

This problem is solved considering three meshes:

a) ⇡ML: the multi–level time–mesh refinement strategy with MPC;

b) ⇡F: equidistant–spaced with the smallest time step of ⇡ML;

c) ⇡C: equidistant–spaced with the largest time step of ⇡ML.

As it can be seen in Fig. 5a, considering the mesh ⇡ML, the car–like system
successfully stops when the terminal condition (16) is satisfied without violating
any constraint. The sequence of solutions given by each sampling step on MPC
is shown in Fig. 5b. The predictions are plotted with a dashed line , while the
implemented controls are plotted with a solid line. Each segment is drawn with
a di↵erent color representing di↵erent MPC sampling times.

(a) MPC trajectory (b) Sequence of optimal trajectories

Fig. 5: Optimal trajectory for (PCP)

The numerical results concerning the three meshes are shown in Table 1,
which shows information about the number of nodes, the smallest time step, the
number of iterations needed to solve the NLP problem, the maximum absolute
local errors of the trajectory, and the CPU times for solving the OCP problem
and for computing the local error as well.

Table 1: Comparing MPC results for the problem (PCP)

⇡j Nj �tj Ij
���
���"(j)

x

���
���
1

CPU time (s)
Solver "

x

⇡ML 365 1/3200 304|13|13|13|13|10|16|5|5|5 4.169e�5 11.448 5.231

⇡F 3201 1/3200 371|34|22|20|18|9|8|7|7|7 3.730e�5 53.493 31.239

⇡C 201 1/200 233|81|13|11|6|6|6|5|5|5 1.261e�3 8.667 1.960
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According to Table 1, the mesh ⇡ML has only 11.4% of the nodes of ⇡F,
nevertheless both meshes have maximum absolute local error of the same order
of magnitude. Computing the solution using ⇡ML takes less than 20% of the time
needed to get a solution using ⇡F, resulting in significant savings in memory and
computational cost.

The mesh ⇡C is the initial coarse mesh considering equidistant spacing. With-
out applying our refinement strategy, the MPC produces a solution with lower
accuracy, 1.261e�3, when compared against the solution obtained via refinement
procedure, 4.169e�5. Moreover, the CPU time spent to compute solution using
⇡ML is, as expected, 50% higher than the one spent to obtain a solution using
⇡C, however it is a good trade–o↵ since the accuracy of the solution increases by
two orders of magnitude. In all tests, the procedure gives the optimal solution
which is computed spending a few seconds overall to solve 10 MPC steps.

The use of adaptive mesh refinement algorithm in real time optimization
problems has additional benefits since it is possible to quickly obtain a solution
even if the refinement procedure is interrupted at an early stage.

5 Conclusions

We develop an extended adaptive time–mesh refinement algorithm providing
local mesh resolution refining only where it is required. In this extension, we
consider a time–dependent stopping criterion for the mesh refinement algorithm
with di↵erent levels "̄(t). In the end, the OCPs are solved within MPC with an
adapted mesh with local mesh resolution which has less nodes in the overall pro-
cedure, yet having maximum absolute local error of the same order of magnitude
when compared against a refined mesh with equidistant–spacing.

Due to the fast response of the algorithm, it can be used to solve real–
time optimization problems. The application demonstrates the advantage of the
proposed adaptive mesh strategy, which leads to results obtained approximately
as fast as the ones given by a coarse equidistant–spacing mesh and as accurate
as the ones given by a fine equidistant–spacing mesh.

With this framework we can use continuous–time plant models directly. The
discretization procedure can be automated and there is no need to select a priori

the adequate time step.
Even if the optimization procedure is forced to stop in an early stage, as might

be the case in real-time, we can still obtain a meaningful solution, although it
might be a less accurate one.
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