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Abstract. This paper concerns the numerical simulation of feedback, adaptive feedforward and
combined feedback/feedforward control systems on the active control of vibrations of beams
with active constrained layer damping (ACLD) treatments. For the simulation a 1-D finite
element (FE) model of beams with an arbitrary number of elastic, piezoelectric and viscoelastic
layers attached to both sides of the beam is utilized. The damping behavior of the viscoelastic
layers is considered by a Laplace transformed Anelastic Displacement Fields (ADF) method.
The simulation is performed using Matlabr and Simulinkr softwares. The analyzed case study
regards the disturbance rejection of an aluminium beam with a pair of surface mounted ACLD
patches. In the design and simulation of the control system a single-input single-output (SISO)
configuration with the output being the velocity at one point of the beam and the input being
the control voltage applied into the piezoelectric constraining layers is considered. The case
study allows to assess and discuss the outcomes and drawbacks of the feedback and feedforward
controllers when used individually and the advantages of the hybrid controller.

1 INTRODUCTION

Active constrained layer damping (ACLD) treatments have revealed from the early 1990s to be
an effective means of vibration suppression [1]. In an attempt to improve performance different
configurations of the constraining active piezoelectric and passive viscoelastic layers have been
used. These treatments are called arbitrary ACLD treatments or hybrid active-passive damping
treatments. The ACLD treatments combine the high passive capacity of viscoelastic materi-
als to dissipate vibrational energy at high frequencies with the active capacity of piezoelectric
materials at low frequencies. Therefore, in the same damping treatment, a broader band con-
trol is achieved benefiting from the advantages of both passive (simplicity, stability, fail-safe,
low-cost) and active (adaptability, high-performance) systems. A survey of advances in hybrid
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active-passive vibrations and noise control via piezoelectric and viscoelastic constrained layer
treatments can be found in references [2–4].

In the last decades the advances in digital signal processing and sensors and actuators tech-
nology have prompted interest in active control and a considerable effort has been put in the
development and implementation of active noise and vibration control theories (see related text-
books [5–9]). These might be divided into two fundamental classes, namely, feedback and feed-
forward control algorithms. The former control strategy has been shown to be most suitable in
applications where the structure is under impulsive or stochastic unknown disturbances and the
latter to the case where deterministic or correlated information about the disturbance is known.
A review paper concerning active structural vibration control is presented in reference [10].

In the open literature several works can be found where feedback theories are applied in
vibration control of beams with arbitrary ACLD (hybrid active-passive) treatments. How-
ever, only a few works utilizing feedforward theory can be found [11, 12]. The most typical
application of feedforward control presented in textbooks concerns the noise attenuation in
ducts and applications concerning vibration reduction are mainly devoted to active structural
acoustic control (ASAC). To the knowledge of the authors the use of hybrid (combined feed-
back/feedforward) control is in this work analyzed for the first time for structural systems with
this kind of damping treatment.

This paper concerns the numerical simulation of feedback, adaptive feedforward and a com-
bined feedback/feedforward control systems on the active control of vibrations of beams with
ACLD treatments. First a 1-D finite element (FE) model of beams with an arbitrary number of
elastic, piezoelectric and viscoelastic layers attached to both sides of the beam [13, 14], which
will be utilized in the simulation and design, is succinctly presented. Next, the damping behav-
ior of the viscoelastic layers is considered by a Laplace transformed Anelastic Displacement
Fields (ADF) method and its FE model implementation is presented. Then, for the design of
the control system architecture, the optimal feedback Linear Quadratic Gaussian (LQG) and
feedforward filtered-reference LMS controllers are presented and discussed when utilized in a
unified way (hybrid controller). Finally, a case study regarding the disturbance rejection of an
aluminium beam with a pair of symmetrically collocated surface mounted ACLD patches is
analyzed with the simulation being performed with Matlabr and Simulinkr software. In the
design and simulation of the control system a single-input single-output (SISO) configuration
with the output being the velocity at one point of the beam and the input being the control
voltage applied into the piezoelectric constraining layers is considered. First a broadband sto-
chastic disturbance is considered and the feedback controller is utilized to suppress vibration.
Then, considering that the designer has access to a periodic reference signal that is correlated
with the disturbance, an adaptive feedforward strategy is employed to cancel the effects of the
disturbance on the system at the chosen output location. Finally, both controllers are combined
into a unified hybrid controller.
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2 BEAMS WITH ARBITRARY ACLD TREATMENTS

When designing hybrid active-passive treatments it is important to know the configuration of
the structure and treatment that gives optimal damping. For simulation the designer needs
a model of the system in order to define the optimal locations, thicknesses, configurations,
control law, etc. Thus, there are numerous options at the design stage. The task of modeling
beams with arbitrary ACLD treatments often requires the development of a coupled model of
the structure, which comprises piezoelectric, viscoelastic and elastic layers. In the development
of FE models different assumptions can be taken into account in the theoretical model when
considering the mechanical model, the damping introduced by the viscoelastic materials and
the electro-mechanical coupling. The mechanical model assumptions concern the definition of
the displacement field. The electro-mechanical ones regard mainly the use (or not) of electric
degrees of freedom (DoFs) and the approximations of the through-the-thickness variation of
the electric potential. Therefore, they lead to decoupled, partial and fully coupled electro-
mechanical theories, which in turn can lead to different modifications of the structure’s stiffness
and different approximations of the physics of the system. Furthermore, different damping
models in the frequency or time domain may be utilized to characterize the damping behavior
of the viscoelastic materials.

2.1 Finite Element Model

In this section the FE model of a beam with arbitrary ACLD treatments is presented. For the
sake of brevity the reader is referred to the works of Vasques et al. [13, 14] for further details.

Consider the layered beam illustrated in Figure 1. The composite beam consists of a host
beam, layer 0, of thickness 2h0, to which other layers (treatments) are attached. In order to
be able to model several configurations of the treatments, the composite beam theory allows
an arbitrary number of layers of elastic, piezoelectric and viscoelastic materials in arbitrary
positions. There are n̄ layers on the top surface and −m̄ layers on the bottom surface. The dis-
placement field is defined according to a partial layerwise theory where the axial and transverse
displacements, ũk(x, zk, t) and w̃k(x, t), of the top (n = 1, . . . , n̄), core (c = 0) and bottom
(m = m̄, . . . ,−1) layers are given by

ũn(x, zn, t) = u0(x, t) + h0θ0(x, t) +
n−1∑
i=1

2hiθi(x, t) + (zn + hn)θn(x, t), (1a)

ũc(x, zc, t) = u0(x, t) + z0θ0(x, t), (1b)

ũm(x, zm, t) = u0(x, t)− h0θ0(x, t)−
−1∑

i=m+1

2hiθi(x, t) + (zm − hm)θm(x, t), (1c)

w̃k(x, t) = w̃n(x, t) = w̃c(x, t) = w̃m(x, t) = w0(x, t), (1d)

where 2hk is the thickness of the kth layer (k = m̄, . . . ,−1, 0, 1, . . . , n̄), u0(x, t), w0(x, t) and
θ0(x, t) are, respectively, the generalized axial and transverse displacements and the rotation of
the beam’s mid-plane, and θn(x, t) and θm(x, t) are the rotation of each nth top and mth bottom
layer. Furthermore, axial displacement continuity at the interfaces of the layers is assured,
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leading to coupling terms in the axial displacements of the layers, and a constant through-the-
thickness transverse displacement w0(x, t) is considered.
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Figure 1. Partial layerwise displacement field of the beam with an arbitrary ACLD treatment.

The material of the piezoelectric layers is assumed to be orthotropic with the symmetry
properties of an orthorhombic crystal of the class mm2 [15, 16]. In the present work, a fully
coupled electro-mechanical theory which takes into account the direct piezoelectric effect with
a non-linear distribution of the electric potential is utilized and the direct piezoelectric effect
is considered by the use of effective stiffness parameters [17, 18], which should be defined
according to the electric boundary condition considered.

The weak forms governing the motion and electric charge equilibrium of the layered beam
with arbitrary ACLD treatments (elastic, piezoelectric and viscoelastic layers located in arbi-
trary positions in the laminate) are obtained from Hamilton’s principle where the Lagrangian
and the work of the externally applied forces are adapted for the electrical and mechanical
contributions [19], so that

δ

∫ t1

t0

(T −H + W ) dt = 0, (2)

where t0 and t1 define the time interval, δ denotes the variation, T is the kinetic energy, H is
the electro-mechanical enthalpy (energy stored in the piezoelectric and non-piezoelectric lay-
ers) and W denotes the work done by the externally applied mechanical forces and electrical
charges. In the resultant weak forms the generalized displacements and electrical potential dif-
ferences vectors are the unknown independent variables.

The FE method is utilized to discretize the weak forms and the generalized displacements
within each element domain are approximated by linear C0 interpolation functions [20] and
constant functions are utilized to approximate the electric potential differences. As a conse-
quence, the electric potential difference becomes constant in each element. The FE mesh is
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then composed of q + 1 nodal points and the global mechanical and electrical degrees of free-
dom (DoFs) vectors, ū(t) and φ̄(t), are defined as

ū(t) =
{
. . . , ūr

0(t), w̄
r
0(t), θ̄

r
0(t), θ̄

r
1(t), · · · , θ̄

r
n̄(t), θ̄

r
m̄(t), · · · , θ̄

r
−1(t), . . .

}T , (3)

φ̄(t) =
{
. . . , φ̄

s
1(t), · · · , φ̄

s
n̄(t), φ̄

s
m̄(t), · · · , φ̄

s
−1(t), . . .

}T , (4)

where r = 1, . . . , q + 1 and s = 1, . . . , q. The superscript r denotes the node at which the DoF
is defined and the subscript identifies the layer to which the DoF refers.

The global equations of motion and charge equilibrium of the discrete system are given by

Muu¨̄u(t) + Kuuū(t) + KT
φuφ̄(t) = Fu(t), (5a)

Kφuū(t) + Kφφφ̄(t) = Q(t), (5b)

where Muu and Kuu are the global mass and stiffness matrices, Kuφ = KT
φu is the global

piezoelectric coupling matrix, Kφφ is the global capacitance matrix and Fu(t) and Q(t) are the
global mechanical force and electric charge vectors (see [13, 14] for further details).

The electrical DoFs vector in Equations (5) can be partitioned into the actuating and sens-
ing DoFs, φ̄(t) = col[φ̄a(t), φ̄s(t)], where the subscripts (·)a and (·)s denote the actuating and
sensing capabilities. Furthermore, the stiffness matrix can be written as the sum of the elastic
and piezoelectric layers stiffness matrices KE

uu and KP
uu. Hence, considering open-circuit elec-

trodes, and in that case Q(t) = 0 [18], the non specified potential differences in (5b) can be
statically condensed in (5a) and the equations of motion and charge equilibrium become

Muu¨̄u(t) +
(
KE

uu + KP∗
uu

)
ū(t) = −KT

φuaφ̄a(t) + Fu(t), (6a)

φ̄s(t) = −K−1
φφsKφusū(t), (6b)

where
KP∗

uu = KP
uu −KT

φusK
−1
φφsKφus.

It’s worthy to mention that a through-the-thickness parabolic distribution of the electric poten-
tial within the piezoelectric layers was already considered in the variational formulation through
the use of effective stiffness parameters and therefore the static condensation in Equation (6a)
only considers the linear counterpart of the electrical potential distribution, which is the one that
in fact contributes to the sensor voltage. Moreover, a second alternative where the equipotential
area condition is satisfied by means of a modified static condensation of the non-specified po-
tentials might be utilized, which corresponds to a more realistic approach, that becomes more
significant for bare piezoelectric beams or as the length of the piezoelectric layers approaches
the length of the host beam (see [18, 21] for further details).

2.2 Viscoelastic Damping Model

The temperature and frequency dependent material properties of the viscoelastic materials causes
some difficulties for the mathematical model, increasing its complexity. Usually the tempera-
ture is assumed constant and only models concerning frequency dependence are utilized. A
time domain model such as the Anelastic Displacement Fields (ADF) [22, 23] is utilized in this
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work and represents a good alternative to frequency domain methods for the study of transient
responses.

Assuming a constant operating temperature (isothermal condition) and simple harmonic ex-
citation, the constitutive behavior of the viscoelastic materials can be characterized in the fre-
quency domain by a complex shear or extensional modulus, G (jω) or E (jω), and a loss factor
η (ω), which accounts for energy dissipation effects [24–26]. Considering this constitutive be-
havior the FE equation of motion in (6a) can be written as

Muu¨̄u(t) +
(
KE

uu + KP∗
uu + KV

uu(jω)
)
ū(t) = −Kuφaφ̄a(t) + Fu(t), (7)

where KV
uu(jω) is the complex frequency dependent global stiffness matrix of the viscoelastic

layers.
In the ADF model developed by Lesieutre [22,23] the self-heating effects of the viscoelastic

layers are neglected, and only the frequency dependence of the viscoelastic material is taken
into account. Thus, the complex shear modulus of the viscoelastic layers, originally formulated
in the frequency domain by Lesieutre [22, 27], may be represented by a series of functions in
the Laplace domain, such that

G(s) = G0

(
1 +

n∑
i=1

∆is

s + Ωi

)
, (8)

where G0 = limt→∞G(t) is the is the relaxed (or static) shear modulus, Ωi is the inverse of the
characteristic relaxation time at constant strain and ∆i the correspondent relaxation resistance.
The relaxed shear modulus G0 and the series of material parameters ∆i and Ωi are evaluated by
curve fitting of the measurements of G(jω).

Considering the stiffness matrices of the non-viscoelastic layers, KEP∗
uu = KE

uu + KP∗
uu , and

the total force vector given by the sum of the mechanical and electrical loads, F(t) = Fu(t) +
Fφ(t), with Fφ(t) = −Kuφaφ̄a(t), if we now write the Laplace transform of Equation (7) yields(

s2Muu + sDuu + KEP∗
uu + G(s)K̄V

uu

)
ũ(s) = F̃(s) + Muu

(
˙̄u0 + sū0

)
+ Duuū0, (9)

where ũ(s) and F̃(s) are the Laplace transforms of the displacement and summed mechanical
and electrical force vectors, ū0 and ˙̄u0 are the initial displacement and velocity vectors, and the
stiffness matrix of the viscoelastic layers was expressed as KV

uu(s) = G(s)K̄V
uu (both shear and

extensional stiffness terms were considered in K̄V
uu through the extensional and shear modulus

relationship). Furthermore, a viscous proportional damping model matrix Duu is considered in
the previous equation to model the material damping of the beam and non-viscoelastic layers.

The ADF model is based in a separation of the viscoelastic material strains in an elastic part,
instantaneously proportional to the stress, and an anelastic part representing material relaxation.
Its implementation on a FE model [28, 29] consists of replacing the DoFs of the vector ũ(s),
which are associated with the viscoelastic layers strain energy, by

ũ(s) = ũE(s) +
n∑

i=1

ũA
i (s), (10)

6
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where ũE(s) and ũA
i (s) (i = 1,. . .,n) represent the nodal DoFs vectors associated with the

elastic and anelastic strains, respectively. To take into consideration this relaxation the entire
anelastic displacement field itself may be comprised of several individual fields where n series
of anelastic DoFs are considered. Furthermore, the anelastic (dissipative) variables series might
be related with the elastic variables by

ũA
i (s) =

Ωi

s + Ωi

ũ(s), (11)

and the elastic displacements that appear in strain energy expressions are replaced by the differ-
ence between the total and anelastic displacements,

ũE(s) = ũ(s)−
n∑

i=1

ũA
i (s) =

n∑
i=1

s

s + Ωi

ũ(s). (12)

Neglecting the initial conditions and substituting Equation (8) into (9) yields[
s2Muu + sDuu + KEP∗

uu + G0K̄
V
uu

(
1 +

n∑
i=1

∆is

s + Ωi

)]
ũ(s) = F̃(s). (13)

Then, substituting Equation (12) into (13) yields(
s2Muu + sDuu + KEP∗

uu + KV 0
uu

)
ũ(s) + KV 0

uu

n∑
i=1

∆i

(
ũ(s)− ũA

i (s)
)

= F̃(s), (14)

where KV 0
uu = G0K̄

V
uu. Considering Equations (11) and (14), after some algebra we get the

following coupled system,(
s2Muu + sDuu + KEP∗

uu + KV∞
uu

)
ũ(s)−KV 0

uu

n∑
i=1

∆iũ
A
i (s) = F̃(s), (15a)( s

Ωi

+ 1
)
ũA

i (s)− ũ(s) = 0, (15b)

where
KV∞

uu =
(
1 +

n∑
i=1

∆i

)
KV 0

uu .

In order to overcome some of the shortcomings of frequency models, the frequency- or time-
dependent behavior of the viscoelastic material should be captured by using a time-domain
model. Thus, multiplying Equation (15b) by ∆iK

V 0
uu and since all matrices are independent

of s, the time domain system is obtained by the inverse Laplace transform of Equations (15),
yielding

Muu¨̄u(t) + Duu ˙̄u(t) +
(
KEP∗

uu + KV∞
uu

)
ū(t)−KV 0

uu

n∑
i=1

∆iū
A
i (t) = F(t), (16a)

∆i

Ωi

KV 0
uu

˙̄u
A
i (t) + ∆iK

V 0
uu ūA

i (t)−∆iK
V 0
uu ū(t) = 0. (16b)

Equations (16) define a coupled system which may be expressed as

M̄¨̄q(t) + D̄ ˙̄q(t) + K̄q̄(t) = F̄(t), (17)

7
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where

M̄ =

[
Muu 0
0 0

]
, D̄ =

[
Duu 0
0 DAA

]
, K̄ =

[
KEE KEA

KAE KAA

]
,

q̄(t) = col
(
ū(t), ūA

1 (t), . . . , ūA
n (t)

)
, F̄(t) = col

(
F(t),0, . . . ,0

)
,

and

DAA = diag
(∆1

Ω1

KV 0
uu , . . . ,

∆n

Ωn

KV 0
uu

)
, KAA = diag

(
∆1K

V 0
uu , . . . ,∆nK

V 0
uu

)
,

KEE = KEP∗
uu + KV∞

uu , KEA =
[
−∆1K

V 0
uu , . . . , −∆nK

V 0
uu

]
, KAE = KT

EA.

In Equation (17) the number of anelastic DoFs of the system, for each ADF series, must be
equal to the number of elastic DoFs. However, model reduction techniques might be utilized
in order to reduce the size of the system. As suggested in [29] the matrices corresponding to
the dissipative (anelastic) DoFs might be reduced and diagonalized to reduce the computational
cost. Considering a modal projection such that ūA

i (t) = ΨAûA
i (t) and ΛA = ΨT

AKV 0
uuΨA is

a diagonal matrix composed by the non zero eigenvalues of KV 0
uu and ΨA the correspondent

matrix of normalized eigenvectors such that ΨT
AΨA = I, the order of the system can be reduced

and matrices DAA, KAA and KAE become

DAA = diag
(∆1

Ω1

ΛA, . . . ,
∆n

Ωn

ΛA

)
, KAA = diag

(
∆1ΛA, . . . ,∆nΛA

)
,

KEA =
[
−∆1K

V 0
uuΨA, . . . , −∆nK

V 0
uuΨA

]
,

where the vector of DoFs is modified to q̂(t) =col
(
ū(t), ûA

1 (t), . . . , ûA
n (t)

)
. In the case where

only some part of the beam is covered with viscoelastic layers only some FEs have viscoelas-
tic components and KV 0

uu can have several rows and columns of zeros which in turn leads to
some zero eigenvalues. Thus, the size of ûA

i (t) can be substantially smaller than that of ūA
i (t).

Furthermore, one may notice from M̄ that the anelastic DoFs have no inertia and therefore the
global mass matrix M̄ is singular and is not positive-definite. However, the singularity of the
mass matrix can be overcome if instead of solving the second-order system (17) one considers a
state-space representation with an adequate design of the state variables. Moreover, the number
of flexible modes is kept the same and the dissipative modes, which correspond to the internal
relaxations of the viscoelastic material, are overdamped with a lower observability.

2.3 State Space Design

The state space approach is the basis of the modern control theories and is strongly recom-
mended in the design and analysis of control systems with a great amount of inputs and outputs.
In this method, dynamic systems are described by a set of first-order differential equations in
variables called the state. See related textbooks in references [30, 31].
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To apply the augmented FE model due to the ADF modelling of the viscoelastic layers in
control design, the system in Equation (17) is transformed into a state space form. Therefore,
in order to overcome the singularity of the mass matrix the state space vector x(t) is chosen as

x(t)=

{
q̂(t)
˙̄u(t)

}
, (18)

where the state variables are the modal projected augmented vector q̂(t) and the the time deriv-
ative of the mechanical DoFs vector ˙̄u(t). It’s worthy to note that the time derivatives of the
anelastic DoFs vectors ûA

i (t) are not considered here since these variables are massless. Thus,
the coupled system in Equation (17) and the sensing Equation (6b) can be expressed in terms of
the state variables vector x(t), yielding

ẋ(t) = Ax(t) + Bφuφ(t) + Buuu(t), (19a)
y(t) = Cx(t), (19b)

where A is the system matrix, Bu and Bφ are the mechanical and electrical input matrices
associated with the mechanical and electrical loads, C is the output matrix, uu(t) and uφ(t) are
the mechanical and electrical input vectors and y(t) is the output vector, given by

A =

 0 0 I
−D−1

AAKAE −D−1
AAKAA 0

−M−1
uuKEE −M−1

uuKEA −M−1
uuDuu

 ,

Bu =

 0
0

M−1
uu

 , Bφ =

 0
0

−M−1
uuKuφa

 ,

C =


−K−1

φφsKφus 0 0

0 0 −K−1
φφsKφus

I 0 0
0 0 I

 , y(t) =


φ̄s(t)
˙̄φs(t)
u(t)
˙̄u(t)

 ,

uu(t) = Fu(t), uφ(t) = φ̄a(t),

As presented by Vasques and Rodrigues [18], the signal induced by the piezoelectric sensors
should be calculated from an average of the electrical DoFs where an electrical FE separation of
the electrodes was performed. Furthermore, the modal projected definitions of matrices DAA,
KAA and KEA should be used in order to reduce the size of the system leading to a lower
computational cost.

2.4 Modal Reduction of the State Space Model

In the process of designing an active control system one can utilize a full model of the system
and, consequently, a higher computational effort is needed, or a reduced model of the system,
which requires a lower computational effort. However, the structural mathematical model and
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controller design are not independent aspects of vibration control. Flexible structures are dis-
tributed parameter systems that have an infinite number of DoF, and a feedback controller based
on a reduced modal model can destabilize the residual modes (unmodeled dynamics) leading to
observation and control spillover problems. They both degrade the system’s performance, and
the former can even cause the system to become unstable [5]. Methods to reduce the effects of
spillover are discussed by Balas [32].

One major disadvantage in using internal variables models such as the ADF to model the
damping introduced by the viscoelastic materials is the creation of additional dissipation coor-
dinates. Even with a modal reduction of the DoFs of the non viscoelastic elements the order of
the system quickly increases as the number of series of dissipation ADF parameters used in the
summation is increased. This size is determined by the number of series of parameters neces-
sary for an accurate curve fitting of the frequency-dependent complex shear modulus. Larger
order makes control design more difficult, especially when these states are non-physical and can
not be directly sensed [33]. It is therefore advantageous to look at model reduction to reduce
the system’s size.

There are many methods on model reduction in structural dynamics. The aims are to approx-
imate the original state space system by an equivalent system with a lower dimension. That can
be achieved by a complex modal projection of the original system and a subsequent truncation
of the number of modes considered. Thus, the complex eigensolution of the system matrix A
is derived such that

AΨR = ΛΨR, ATΨL = ΛΨL, (20)

where ΨR and ΨL are the right and left complex eigenvectors matrices normalized by ΨT
LΨR =

I and Λ the correspondent eigenvalues matrix. However, if one looks at the complex eigenvalues
of A one finds that some of them are underdamped, usually associated with the elastic DoFs,
and other overdamped ones, which are associated with the dissipative DoFs. Thus, considering
a modal decomposition of the eigensolution in the underdamped and overdamped modes yields

Λ =

[
ΛU 0
0 ΛO

]
, ΨR =

[
ΨRU ΨRO

]
, ΨL =

[
ΨLU ΨLO

]
, (21)

where the subscripts (·)U and (·)O are used to denote the underdamped and overdamped coun-
terparts of the complex eigensolution. Since the contribution of the overdamped modes to the
dynamic response of the system is negligible the state space vector can be approximated only
by the contribution of the elastic (underdamped) modes such that x(t) ≈ ΨRUxU(t) and the
state space system in Equations (19) is reduced to a state space modal system with the same
outputs and state space vector xU(t), given by

ẋU(t) = ΛUxU(t) + ΨT
LUBφuφ(t) + ΨT

LUBuuu(t), (22a)
y(t) = CΨRUxU(t). (22b)

However, when excited a structure presents preferable modes of vibration which depend of
the spectral content of the excitation. Assuming that the lower order modes, which have lower
energy associated and consequently are the more easily excitable ones, are the more significant
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to the global response of the system in the frequency range of interest, a truncated complex
modal matrix Ψ̂RU can be utilized instead where only the first r modes are considered,

x(t) ≈
r∑

i=1

Ψi
RUxi

U(t) = Ψ̂RU x̂U(t), (23)

where Ψ̂RU= [Ψ1
RU , · · · ,Ψr

RU ] is the truncated modal matrix and x̂U(t)= {x1
U(t), · · · , xr

U(t)}T

the correspondent modal coordinates vector. Hence, the system’s size isn’t anymore the total
number of DoFs of the FE model but twice the number of modes chosen to model it. Finally,
considering the correspondent underdamped eigenvalues truncated matrix Λ̂U , the state space
system in Equations (19) is reduced to a truncated state space modal system with the same
outputs and truncated state space vector x̂U(t), given by

˙̂xU(t) = Λ̂U x̂U(t) + Ψ̂T
LUBφuφ(t) + Ψ̂T

LUBuuu(t), (24a)

y(t) = CΨ̂RU x̂U(t). (24b)

3 CONTROL SYSTEM ARCHITECTURE DESIGN

3.1 Feedback Control

The ultimate aim of the feedback control is often to reduce the motion of the mechanical system
to the greatest possible extent and, in that case, the control system is said to act as a regulator.
Systems where direct methods of designing feedback control systems which achieve the greatest
possible reduction in the dynamic response are used, are known as optimal control systems and
classical textbooks about the subject can be found in references [30, 31].

For the sake of clarity the development of the following equations is done taking into con-
sideration the conventional notation tipically utilized by the control comunity to denote a state
space system, as represented in Equations (19). However, for the present state space model of
beams with ACLD treatments, the reduced system in Equations (24) should be used instead,
and the respective correspondence between vectors and matrices between Equations (19) and
(24) should be made.

In optimal control theory the feedback control system is designed to minimize a cost func-
tion, or performance index, which is proportional to the required measure of the system’s re-
sponse and to the control inputs required to attenuate the response. When the control system is
designed to operate for a long period of time the cost function can be reasonably chosen to be
quadratically dependent on the system states and control input, given by

J =

∫ ∞

0

[
xT(t)Qxx(t) + uT

φ(t)Ruφ(t)
]

dt, (25)

where Qx and R are the state variable and control input weighting matrices.
The present work considers an approach to control system design where the dynamics of the

mechanical system is considered in terms of its modal response. Since the truncated state space
modal system presented in Equations (24) is composed of underdamped complex conjugated
modes the obtained state space matrices terms are presented in complex conjugated pairs. This
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may constitute a problem for controller design. Thus, as suggested by Meirovitch [5] or Friot
[34], the system can be represented by an equivalent system with real matrices where in this case
the new (transformed) states are not the modal amplitudes but something related with them,
while the outputs of the system remain the same. Hence, one may choose as a performance
index the cost function minimizing the new state variables (related with the modal amplitudes).

By a convenient definition of the state weighting matrix Qx, the modal gain matrix can be
’tuned’ to give different design objectives. Assuming that all the modes (state variables) are ob-
servable and controllable, the cost function in Equation (25) provides independent control over
the natural frequencies and damping ratios of each mode. That strategy is called Independent
Modal-Space Control (IMSC) [5]. Some convenient choices for the definition of the weighting
matrices can be, for example, R =diag(I, I) and Qx =diag(Ω,0), where I is the identity matrix
and Ω a diagonal matrix, with the generic term ω2

i (squared natural frequency of the ith mode),
of size (r × r), with r being the number of modes of the truncated modal model.

It can be seen in references [30, 31] that the feedback control system which minimizes the
cost function in Equation (25), for the linear time-invariant equivalent real system of Equations
(24), uses state feedback with a sub-optimal feedback gain matrix Kg, so that

uφ(t) = −Kgx(t). (26)

Since the feedback gains typically approach steady-state values far from the initial time, a
steady-state controller is utilized with a steady-state feedback gain matrix given by Kg =
R−1BT

φP, where P is the steady state solution of the matrix Riccati equation,

PA + ATP + Qx −PBφR
−1BT

φP = 0. (27)

This control philosophy is called the steady-state Linear Quadratic Regulator (LQR).
Thus, considering the feedback law in Equation (26), the closed-loop state equation is given

by
ẋ(t) = (A−BφKg)x(t) + Buuu(t). (28)

In the previous equation it was assumed that all the states were completely observable and
therefore could be directly related to the outputs and used by the control system. However,
that is not always the case and a more realistic approach would consider that only some of the
outputs y(t) can be known and measured. In order to be able to use the states information in
the control system, it will be necessary to estimate the states from a model of the system and
a limited number of observations of the outputs. That estimation is made usually by a state
estimator or observer.

The state variable estimates are very sensitive to any uncorrelated noise in the system, par-
ticularly measurement noise from the observed outputs of the mechanical system. Knowing the
statistical properties of the various sources of noise in the mechanical system, and assuming
white uncorrelated noise uniformly distributed in the bandwidth, an ’optimal’ state observer
which minimizes the effects of plant and measurement noise is known as Kalman-Bucy filter.
In a similar way to the steady-state LQR, the ’optimal’ Kalman-Bucy gain matrix typically ex-
periences a transient and then approaches steady-state as time increases from the initial time. In
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applications where the estimator is designed to operate for time periods that are long compared
to the transient times of the Kalman-Bucy gains, it is reasonable to ignore the transient and
exclusively use the steady-state gains Ke. The equations for computing the Kalman-Bucy gain
have a striking resemblance to the equations for computing the LQR gain. As pointed out by
Burl [30] the steady-state Kalman-Bucy filter problem is shown to be mathematically equivalent
to the steady-state LQR problem when appropriate substitutions are made.

Combining the steady-state Kalman-Bucy filter with the steady state LQR, the inter-related
dynamic system will take the form{

ẋ(t)
ė(t)

}
=

[
A−BφKg BφKg

0 A−KeC

]{
x(t)
e(t)

}
+

[
Bu

Bu

]
uu(t) +

[
Bw 0
Bw −Ke

]{
w(t)
v(t)

}
, (29)

where ė(t) is the error between the true and estimated states, Bw is the plant noise input matrix,
and w(t) and v(t) are the plant and measurement noise vectors. The plant and measurement
noise are both assumed to be white, have a gaussian probability density function and are as-
sumed uncorrelated with the inputs. The correlation properties of the plant and measurement
noise vectors are given by the correlation matrices

E
[
Bww(t)wT(t)BT

w

]
= W, E

[
v(t)vT(t)

]
= V, (30)

where E denotes the expectation operator.
Because we must assume that the random perturbations (force disturbance or measurement

noise) are gaussian, this control philosophy is called Linear Quadratic Gaussian (LQG) control.
The dynamics of the coupled controller and observer system is determined by the eigenvalues
of the system matrix in Equation (29) and the closed-loop coupled system stability depends
of the two sub-systems. The error will asymptotically be stable provided the observer poles
have negative real components collocated, in the complex plan, as far as possible from the
system poles so that the observer error reduces more rapidly than the system response. A
comprehensive study concerning feedback control theories can be found in reference [35].

3.2 Feedforward Control

Feedforward control system design and implementation rely upon digital filtering fundamen-
tals and adaptive filter theory, which can be found in reference textbooks such as [9, 36, 37].
Contrarily to feedback systems, feedforward control assumes that one has information about
the original (primary) excitation of the system and that a reference signal correlated with the
excitation is available. The aims are then to produce a secondary excitation that will cancel the
effects of the primary excitation at the chosen location.

The filtered-reference LMS algorithm is the most widely accepted feedforward control al-
gorithm because of its ease of implementation and remarkable performance. In Figure 2 a
schematic diagram of the discrete-time (digital) generalized plant for a hybrid, combined feed-
back/feedforward, controller is presented. It is assumed that a detection system, which produces
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a signal correlated with the primary disturbance, exists (or not, and in that case the true exci-
tation signal is utilized), and produces a reference signal r(k) correlated with the excitation.
This signal is then adaptively filtered to generate the necessary control action, uff

φ , to cancel the
effect of the primary excitation (disturbance).

The control filtering process utilizes an adaptive finite impulse response (FIR) filter whose
ith coefficient at the kth sample time is hi(k). The filter output uff

φ (k) is obtained from

uff
φ (k) =

N∑
i=0

hi(k)r(k − i), (31)

where N + 1 is the number of filter coefficients. Then, the control signal has to pass through
a part of the physical system before the error sensor measures the output. This physical path,
Pφ(z), is called the cancelation path (or error path). Therefore, the output of the plant due to
the feedforward control input only is given by

yφ(k) =
M∑

j=0

gj

N∑
i=0

hi(k)r(k − i− j), (32)

where gj is the discrete impulse response of the control input-to-output path Pφ(z), which is
assumed to be of order L. Thus, the net output of the system, y(k), can be written as

y(k) = yu(k) +
M∑

j=0

gj

N∑
i=0

hi(k)r(k − i− j). (33)

However, the order of convolution can be interchanged without changing the result, yielding

y(k) = yu(k) +
N∑

i=0

hi(k)r̄(k − i), (34)

where

r̄(k − i) =
M∑

j=0

gjr(k − i− j). (35)

By rearranging the convolution, a signal r̄(k − i) is created, which is to be estimated by the
filtered-reference operation. If the true impulse response of the plant Pφ(z) is estimated by an
FIR or infinite impulse response (IIR) filter, then an estimate of r̄(k) is given as r̂(k).

The problem of how best to adapt the filter coefficients hi(k) can now be addressed. They
can be adapted in order to minimize a cost function quadratically dependent of the output,
J = E[y2(k)]. However, as for the LMS algorithm [36], the instantaneous value of y2(k) is
used as an estimate of the expected value of J . A simple gradient descent algorithm is thus
guaranteed to converge to the globally optimal solution of the problem of minimizing the cost
function. Such an adaptive algorithm can be written as

hi(k + 1) = hi(k)− µ
∂J

∂hi(k)
, (36)

where µ is a convergence coefficient. Thus, from the definition of the cost function the derivative
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in Equation (36) is written as
∂J

∂hi(k)
= 2y(k)

∂y(k)

∂hi(k)
. (37)

From Equation (34) the derivative of y(k) with respect to hi(k) is simply r̄(k − i). If one uses
the estimated filtered reference signal r̂(k− i), the steepest descent algorithm required to adapt
the coefficients of the digital controller, given by Equation (36), can thus be written as

hi(k + 1) = hi(k)− αy(k)r̂(k − i), (38)

where α = 2µ is another convergence coefficient parameter that determines the speed and
stability of adaptation. The convergence properties of the filtered-reference LMS algorithm
are similar to those of the normal LMS algorithm, whose properties are described in detail by
Widrow and Stearns [36], for example.

3.3 Combined Feedback/Feedforward Control

Combined feedback/feedforward (hybrid) control is defined as the combination of both feed-
back and adaptive feedforward control, as outlined in [7], and a schematic diagram of the
discrete-time (digital) generalized plant for a SISO control system is depicted in Figure 2. The
primary purpose of hybrid control systems is to design the disturbance control problem with the
architecture best suited for overall performance. If a reverberant plant is exposed to exogenous
inputs consisting of both stochastic and harmonic disturbances, for which a reference correlated
with the harmonic disturbance is available, it is likely that feedback control strategies are best
suited for the stochastic disturbances, while adaptive feedforward control strategies are better
suited for the harmonic disturbances. Hybrid control utilizes both forms of control to maximize
the performance of the adaptive structure to mixed-signal disturbances. The essential features of
hybrid control for adaptive structures are: robust disturbance rejection of narrowband, periodic
signals; simultaneous transient suppression of impulsive and stochastic disturbances; improved
performance and convergence of the adaptive, feedforward controller.

4 CASE STUDY

The primary purpose of this case study is to investigate the design of feedback, adaptive feed-
forward and combined feedback/feedforward (hybrid) vibration suppression of a beam with a
partial symmetrically collocated ACLD treatment (viscoelastic layers sandwiched between the
piezoelectric patches and the base beam). With this purpose, the FE and ADF model previ-
ously presented were implemented in Matlabr and the control algorithms were simulated with
Simulinkr. The structural response is assumed to derive from the presence of either periodic or
stochastic point-force disturbances. First, an optimal LQG controller is designed to mitigate the
effects of stochastic disturbances. Then, an adaptive feedforward controller (filtered-reference
LMS) is implemented for a periodic disturbance, and the final example combines both the feed-
back and adaptive feedforward elements to realize a hybrid controller.

The cantilever aluminium beam with the ACLD patches is depicted in Figure 3. The beam
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Figure 2. Schematic diagram of the discrete-time generalized plant for the combined feedback/feedforward (hy-
brid) SISO controller.

is 300 mm long and 2 mm thick, the partial ACLD treatment is 70 mm long, with viscoelastic
and piezoelectric layers of thickness 0.03 mm and 1 mm, respectively, and the symmetrically
collocated ACLD treatment is positioned 4 mm away from the clamped edge. The mechanical
and electrical material properties of the passive viscoelastic layers, 3M ISD112 [38], and of the
piezoelectric constraining patches, PXE-5, are presented in Table 1 (see the IEEE standard [16]
for details about notation). The shear storage modulus and loss factor of the viscoelastic mater-
ial at the 27 ◦C, presented in Figure 4, were defined by means of a three-series ADF model with
parameters G0 = 0.5 MPa, ∆ = [0.743, 3.265, 43.284], Ω = [468.7, 4742.4, 71532.5] rad/ s,
which were determined by curve fitting experimental data in the frequency range 20− 5000 Hz
[29]. Furthermore, the Young’s storage modulus was obtained assuming a frequency indepen-
dent Poisson’s ratio equal to 0.45.

Aluminium 3M ISD 112 PXE-5
E 70 GPa G Figure 4 cE

11 131.1 GPa d31 −215× 10−12 m V−1

ν 0.3 ν 0.45 cE
12 7.984 GPa d33 500× 10−12 m V−1

ρ 2710 kg m−3 ρ 1600 kg m−3 cE
13 8.439 GPa d15 515× 10−12 m V−1

cE
33 12.31 GPa εT

11/ε0 1800
cE
44 2.564 GPa εT

33/ε0 2100
cE
66 2.564 GPa ρ 7800 kg m−3

Table 1. Material properties of the aluminium, PXE-5 and 3M ISD112.
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Figure 3. Clamped beam with a pair of ACLD patches.
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Figure 4. Frequency dependent properties of 3M ISD112 at 27 ◦C defined through a three-series ADF model.

In order to infer the amount of damping introduced by the PCLD treatment, the length of the
piezoelectric constraining layer was defined according to the maximum length of commercially
available piezoelectric actuators. Then, a geometric optimization study, through a parametric
study of the influence of only varying the thickness of the viscoelastic layers in the overall
damping performance of the PCLD treatment, was performed. The beam was discretized into
150 equal length FEs, with a layerwise (discrete-layer) configuration of 1/1/3/1/1 for the five
physical layers, a state space model with 20 modes with a modal damping ratio equal to 0.2%
for all the modes was considered, and the operating temperature was supposed to be constant
and equal to 27 ◦C. The damping ratios of the first five modes for viscoelastic thickness in the
range 0.001− 1 mm are presented in Figure 5.

From the analysis of Figure 5, one can see that the optimal thickness depends on the fre-
quency range (modes) to attenuate, with the maximum values of damping ratio occurring at
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Figure 5. Influence of the viscoelastic layers thickness on the modal damping ratios of the beam with PCLD
treatment.

different thickness. Furthermore, it can be seen that the optimal thickness for the first three
modes is comprised in the range 0.01 − 0.02 mm, and for the higher frequency modes in the
range 0.05− 0.08 mm, with damping ratios more or less comprised between 2− 4% (note that
a 0.2% damping ratio was considered for the untreated beam). Furthermore, it should be noted
that the values of the natural frequencies remain practically the same for the different thick-
nesses, with values for the thickness 0.03 mm equal to 22.57 Hz, 119.9 Hz, 281.7 Hz, 578.9 Hz
and 1040 Hz. Since the aims of the treatment are to attenuate significantly the first 5 modes, and
since a trade off in modal damping performance occurs for different thicknesses, the optimal
thickness value was set to 0.03 mm, revealing the effects of the passive piezoelectric (without
control) treatment. That is the thickness value optimized for the PCLD treatment utilized herein.

With the optimal thickness chosen, the next step is to actively utilize the piezoelectric layers,
through connection with the LQG controller, to enhance the PCLD treatment performance.
Here, a SISO control system is considered with the input being the control voltage applied into
the piezoelectric layers, which since the treatment is symmetrically collocated is the same for
both active layers but with opposite polarity, and the output being the velocity of the free tip of
the beam, which is assumed to be measured. In order to damp the first five modes, and since
they occur in complex conjugated pairs, the LQR state weighting matrix for the real equivalent
system, as pointed out in Section 3.1, is set to Qx = 1 × 106diag(ω2

1, ω
2
1, . . . , ω

2
5, ω

2
5, 0, . . . , 0)

and the control input weighting matrix to R = 1. For the LQG controller design, a white
noise mechanical disturbance applied on the free end of the beam is modeled as plant noise.
Therefore, the equality Bw = Bu in Equation (30) should be considered, and a plant noise
vector (force disturbance) with E[w(t)wT(t)] = 0.25 N2 and a sensor white noise disturbance
with E[v(t)vT(t)] = 1 × 10−5 V2 are considered for the definition of the noise correlation
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matrices and Kalman-Bucy gain design. It should be mentioned that the only output measured
considered in the Kalman filter estimation is the velocity at the free tip. Furthermore, in order
to avoid the depolarization of the piezoelectric actuators, the maximum control voltage applied
is set to 250 V, leading to a maximum electric field of 250 V/ mm.

The control voltage and time displacement at the free end, for a white noise mechanical force
disturbance applied at the free end too, for the bare beam and PCLD and ACLD treated beam
configurations are obtained with Simulinkr, with the sampling frequency set to 10000 Hz, and
are presented in Figure 6. It can be seen that both the PCLD and ACLD treatments manage
to reduce the tip displacement significantly. When compared to the bare beam displacement
standard deviation, which is equal to 5.9 mm, the standard deviations of the PCLD and ACLD
treatment cases, which is equal to 1.59 mm and 0.76 mm, respectively, demonstrate the vibra-
tion control efficiency. Moreover, it can be seen that when compared with the fail safe PCLD
treatment, the ACLD treatment improves even further (around 50%) the damping performance,
with the actuating control voltage not exceeding 250 V.
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Figure 6. Control voltage and tip displacement histories at the free tip for a white noise mechanical force distur-
bance applied at the free end of the beam for the bare beam, PCLD and ACLD treatment configurations.

In order to analyze the capacity of the PCLD and ACLD treatments in the frequency domain,
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the point receptances at the free end of the beam are presented in Figure 7. The PCLD treatment
significantly reduces the magnitude of the first resonance in approximately 7 dB and the ACLD
treatment in approximately 20 dB. Furthermore, the PCLD manages to significantly attenuate
all modes; in comparison the ACLD attenuates them even more, except the third mode which
rests almost unaltered, and the fifth is completely eliminated. Moreover, the damping ratios of
the first five modes obtained with PCLD are 2.20%, 2.46%, 1.74%, 2.88%, 3.65% and with
ACLD are 10%, 12%, 2.46%, 15.3%, 100%, which should be compared with the 0.2% for all
modes obtained for the bare beam. Both Figures 6 and 7 show the adaptability and improvement
in the damping capabilities obtained with the ACLD treatment, and the robustness and highly
satisfactory performance of the PCLD in case the active system controller fails, when the beam
is under stochastic mechanical disturbances.

10
1

10
2

10
3

−140

−120

−100

−80

−60

−40

−20

0

R
ec

ep
ta

nc
e 

[d
B

] 
(r

ef
. 1

m
/N

)

Frequency [Hz]

Bare beam PCLD ACLD

Figure 7. Point receptance at the free tip for the bare beam, PCLD and ACLD treatment configurations.

In order to attenuate the effects of a sinusoidal point-force disturbance oscillating at a fre-
quency of 600 Hz, the well known adaptive filtered-reference LMS algorithm is utilized. First,
the LMS algorithm is used to identify the plant cancellation path (control voltage to measured
velocity path) at the disturbance frequency, which for a single frequency only requires to filter
weights, with the convergence being achieved in nearly 0.5 s. After identifying the plant along
the cancellation path, the filtered-reference LMS algorithm was implemented. Again, only two
filter weights were considered in the adaptive feedforward controller and the results are pre-
sented in Figure 8. As can be seen, the control voltage is limited to 250 V in absolute value,
and the ACLD feedforward controller manages to reduce the free tip displacement significantly
when compared with the PCLD one. Furthermore, the filter weights did not converge yet at the
time of 5 s.
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Figure 8. Tip displacement, control voltage and filter weights, for a sinusoidal disturbance applied at the free end
of the beam, obtained with the adaptive feedforward controller for the PCLD and ACLD treatment configurations.

While the filtered-reference LMS algorithm can be used to successfully control a periodic
disturbance, as shown in Figure 8, feedback control is often more appropriate for control of
stochastic disturbances. This is particularly true when an uncontrollable reference signal can
not be identified and the system is subject to both periodic and stochastic disturbances. To
demonstrate the complimentary performance of the two control approaches, the hybrid control
approach described in Section 3.3 is implemented for the same sinusoidal disturbance. The
same SISO system in the previous example is used here; however, the LQG dynamic compen-
sator designed earlier for the stochastic disturbances is also incorporated in the control path,
which modifies the plant that is acted on by the feedforward controller. Therefore, the modified
cancellation path is identified again. The results of the hybrid controller are presented in Figure
9.

As can be seen from the analysis of Figures 8 and 9, when the hybrid control system is
engaged, linearly combining both feedback and adaptive feedforward, and for the same conver-
gence parameter, the displacement converges faster. The displacement results are plotted on the
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Figure 9. Tip displacement, control voltage and filter weights, for a sinusoidal disturbance applied at the free end
of the beam, obtained with the adaptive hybrid controller for the PCLD and ACLD treatment configurations.

same scale to display the improved convergence characteristics and transient response perfor-
mance. Furthermore, at the end of the period of time considered in the simulation (t = 5 s), the
displacement with the adaptive feedforward controller is comprised in an interval of amplitude
0.3 mm while with the hybrid controller a 0.05 mm amplitude was obtained. These values are
obtained for the ACLD case and when compared with the results of the PCLD system, 2 mm
amplitude, demonstrate the effectiveness of the ACLD treatment. Moreover, note that there is
an initial transient response of the structure when the sinusoidal disturbance is introduced at
t = 0 s. This transient response decays much faster with the hybrid controller and converges to
a lower displacement amplitude value.

5 CONCLUSION

In this paper a generic formulation for the study of beams with arbitrary active constrained
layer damping (ACLD) treatments was presented. A finite element (FE) model, considering a
partial layerwise displacement formulation and a fully coupled electromechanical theory, was
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succinctly presented and utilized to model the structural system. The damping behavior of
the viscoelastic layers was considered by a Laplace transformed Anelastic Displacement Fields
(ADF) method and implemented in the FE model. Furthermore, the optimal feedback, Linear
Quadratic Gaussian (LQG), and adaptive feedforward, filtered-reference LMS, controllers were
described and discussed when used individually or combined in a unified hybrid controller.

The analyzed case study regards the disturbance rejection of an aluminium beam with a pair
of symmetrically collocated surface mounted ACLD patches. For the design and simulation of
the control system, Matlabr and Simulinkr softwares were utilized, and a single-input single-
output (SISO) configuration, with the output being the velocity at the free end of the beam,
and the input being the control voltage applied into the piezoelectric constraining layers, was
considered. First, a broadband stochastic disturbance was considered and a feedback controller
was utilized to suppress vibration. Then, considering that the designer has access to a periodic
reference signal that is correlated with the disturbance, an adaptive feedforward strategy was
employed to cancel the effects of the disturbance on the plant. Finally, both controllers were
combined into a unified hybrid controller.

The case study allowed to assess and discuss the outcomes and drawbacks of the feedback
and feedforward controllers when used individually and the advantages of the hybrid controller.
The hybrid controller improved the feedback performance and led to an improved performance
and convergence of the adaptive feedforward controller. The transient response of the adaptive
hybrid control system was observed to converge on a much faster timescale due to the modifi-
cation of the system dynamics resulting from the feedback control. The rate of convergence for
the adaptive controller is thus increased in hybrid configurations.
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