Abstract (EN):
We propose a new model predictive control (MPC) framework to generate feedback controls for time-varying nonlinear systems with input constraints. We provide a set of conditions on the design parameters that permits to verify a priori the stabilizing properties of the control strategies considered. The supplied sufficient conditions for stability can also be used to analyse the stability of most previous MPC schemes. The class of nonlinear systems addressed is significantly enlarged by removing the traditional assumptions on the continuity of the optimal controls and on the stabilizability of the linearized system. Some important classes of nonlinear systems, including some nonholonomic systems, can now be stabilized by MPC. In addition, we can exploit increased flexibility in the choice of design parameters to reduce the constraints of the optimal control problem, and thereby reduce the computational effort in the optimization algorithms used to implement MPC.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
17