Abstract (EN):
An optical fiber sensor for the measurement of oxygen in gaseous environments, which is based on the quenching of the fluorescence of a ruthenium complex, is presented. The sensing chemistry is immobilized in a sol-gel based solid matrix that is coated on a tapered optical fiber probe. Oxygen measurement is performed both by phase and fluorescence intensity spectroscopy. Experimental results show that the fluorescence intensity and the lifetime depend both on oxygen and temperature. A scheme for simultaneous determination of the temperature and the oxygen concentration is proposed. Temperature measurement is performed using the excitation radiation and an absorption long pass filter. Preliminary results are presented which show a temperature measurement independent of oxygen and of optical power level.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
4