Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Mechanism of Formation of the Internal Aldimine in Pyridoxal 5 '-Phosphate-Dependent Enzymes
Publication

Publications

Mechanism of Formation of the Internal Aldimine in Pyridoxal 5 '-Phosphate-Dependent Enzymes

Title
Mechanism of Formation of the Internal Aldimine in Pyridoxal 5 '-Phosphate-Dependent Enzymes
Type
Article in International Scientific Journal
Year
2011
Authors
Eduardo F Oliveira
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Maria J Ramos
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 133
Pages: 15496-15505
ISSN: 0002-7863
Scientific classification
FOS: Natural sciences > Chemical sciences
Other information
Authenticus ID: P-002-KJX
Abstract (EN): In this paper we studied the mechanism of formation of the internal aldimine, a common intermediate to most pyridoxal 5'-phosphate (PLP)-dependent enzymes. A large model based on the crystal structure from the human ornithine decarboxylase (ODC) enzyme was constructed and in total accounts for 504 atoms. The reaction mechanism was investigated using the ONIOM methodology (B3LYP/6-31G(d)//AM1), and the final energies were calculated with the M06/6-311++G(2d,2p)//B3LYP/6-31G(d) level of theory. It was demonstrated that the reaction is accomplished in three sequential steps: (i) the nucleophilic attack of Lysine69 to PLP, (ii) the carbinolamine formation, and (iii) a final dehydration step. For the carbinolamine formation, several mechanistic hypotheses were explored, and the preferred pathway assigns a key role for the conserved active site Cys360. The overall reaction is exergonic in -9.1 kcal/mol, and the rate-limiting step is the dehydration step (E(a) = 13.5 kcal/mol). For the first time, we provide an atomistic portrait of this mechanism in an enzymatic environment. Moreover, we were able to assign a novel role to Cys360 in the ODC reaction mechanism that was never proposed.
Language: English
Type (Professor's evaluation): Scientific
Contact: mjramos@fc.up.pt
No. of pages: 10
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Unraveling the Enigmatic Mechanism of L-Asparaginase II with QM/QM Calculations (2013)
Article in International Scientific Journal
Diana S Gesto; Nuno M F S A Cerqueira; Pedro A Fernandes; Maria J Ramos
The enthalpies of formation of o-, m-, and p-benzoquinone: Gas-phase ion energetics, combustion calorimetry, and quantum chemical computations combined (2005)
Article in International Scientific Journal
Fattahi, A; Kass, SR; Liebman, JF; Matos, MAR; Miranda, MS; Morais, VMF

See all (28)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-16 at 02:23:28 | Privacy Policy | Personal Data Protection Policy | Whistleblowing