Abstract (EN):
RGB-D sensors face multiple challenges operating under open-field environments because of their sensitivity to external perturbations such as radiation or rain. Multiple works are approaching the challenge of perceiving the three-dimensional (3D) position of objects using monocular cameras. However, most of these works focus mainly on deep learning-based solutions, which are complex, data-driven, and difficult to predict. So, we aim to approach the problem of predicting the three-dimensional (3D) objects¿ position using a Gaussian viewpoint estimator named best viewpoint estimator (BVE), powered by an extended Kalman filter (EKF). The algorithm proved efficient on the tasks and reached a maximum average Euclidean error of about 32mm. The experiments were deployed and evaluated in MATLAB using artificial Gaussian noise. Future work aims to implement the system in a robotic system. © 2024 by SCITEPRESS-Science and Technology Publications, Lda.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
8