Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Proving the suitability of magnetoelectric stimuli for tissue engineering applications
Publication

Publications

Proving the suitability of magnetoelectric stimuli for tissue engineering applications

Title
Proving the suitability of magnetoelectric stimuli for tissue engineering applications
Type
Article in International Scientific Journal
Year
2016
Authors
Ribeiro, C
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Correia, V
(Author)
Other
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Martins, P
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Gama, FM
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Lanceros Mendez, S
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 140
Pages: 430-436
ISSN: 0927-7765
Publisher: Elsevier
Other information
Authenticus ID: P-00K-3D6
Abstract (EN): A novel approach for tissue engineering applications based on the use of magnetoelectric materials is presented. This work proves that magnetoelectric Terfenol-D/poly(vinylidene fluoride-co-trifluoroethylene) composites are able to provide mechanical and electrical stimuli to MC3T3-E1 pre-osteoblast cells and that those stimuli can be remotely triggered by an applied magnetic field. Cell proliferation is enhanced up to approximate to 25% when cells are cultured under mechanical (up to 110 ppm) and electrical stimulation (up to 0.115 mV), showing that magnetoelectric cell stimulation is a novel and suitable approach for tissue engineering allowing magnetic, mechanical and electrical stimuli.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 7
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Nanotechnological carriers for cancer chemotherapy: The state of the art (2015)
Another Publication in an International Scientific Journal
Estanqueiro, M; Maria Helena Amaral; Conceicao, J; Sousa Lobo, JMS
3D-printed biosurfactant-chitosan antibacterial coating for the prevention of silicone-based associated infections (2023)
Article in International Scientific Journal
Narciso F; Cardoso S; Monge N; Lourenço M; Victor Martin; Duarte N; Catarina Santos ; Gomes PS; Ana Bettencourt
UV-C driven reduction of nanographene oxide opens path for new applications in phototherapy (2024)
Article in International Scientific Journal
Silva, FALS; Timochenco, L; Costa Almeida, R; Fernandes, JR; Santos, SG; Magalhães, F. D.; Artur Pinto
Topical co-delivery of methotrexate and etanercept using lipid nanoparticles: A targeted approach for psoriasis management (2017)
Article in International Scientific Journal
Ferreira, M; Barreiros, L; Marcela A Segundo; Torres, T; Selores, M; Costa Lima, SAC; Salette Reis
The potential advantages of using a poly(HPMA) brush in urinary catheters: effects on biofilm cells and architecture (2020)
Article in International Scientific Journal
Patrícia Alves; Luciana Gomes; Mariia Vorobii; César Rodriguez-Emmenegger; Filipe Mergulhão

See all (77)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2025-07-06 at 00:08:54 | Acceptable Use Policy | Data Protection Policy | Complaint Portal