Abstract (EN):
In this chapter we will be mainly concerned with solving the discrete fractional initial value problem (DFIVP): ¿¿a+¿¿1¿x(t)=f(t+¿¿1,x(t+¿¿1)),t¿¿a,$$\displaystyle {{ }_{\ast }}\varDelta _{a+\alpha -1}^\alpha x(t)=f(t+\alpha -1,x(t+\alpha -1)),\quad t\in \mathbb {N}_a, $$x(a+¿¿1)=A,$$\displaystyle x(a+\alpha -1)=A, $$ for a suitable function f and real numbers a, A, ¿ with ¿ ¿ (0, 1]. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Language:
English
Type (Professor's evaluation):
Scientific