Abstract (EN):
Coronary artery calcium is a good indicator of coronary artery disease and can be used for cardiovascular risk stratification. Over the years, different deep learning approaches have been proposed to automatically segment coronary calcifications in computed tomography scans and measure their extent through calcium scores. However, most methodologies have focused on using 2D architectures which neglect most of the information present in those scans. In this work, we use a 3D convolutional neural network capable of leveraging the 3D nature of computed tomography scans and including more context in the segmentation process. In addition, the selected network is lightweight, which means that we can have 3D convolutions while having low memory requirements. Our results show that the predictions of the model, trained on the COCA dataset, are close to the ground truth for the majority of the patients in the test set obtaining a Dice score of 0.90 +/- 0.16 and a Cohen's linearly weighted kappa of 0.88 in Agatston score risk categorization. In conclusion, our approach shows promise in the tasks of segmenting coronary artery calcifications and predicting calcium scores with the objectives of optimizing clinical workflow and performing cardiovascular risk stratification.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
6