Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Gold Nanoprobes for Robust Colorimetric Detection of Nucleic Acid Sequences Related to Disease Diagnostics
Publication

Publications

Gold Nanoprobes for Robust Colorimetric Detection of Nucleic Acid Sequences Related to Disease Diagnostics

Title
Gold Nanoprobes for Robust Colorimetric Detection of Nucleic Acid Sequences Related to Disease Diagnostics
Type
Another Publication in an International Scientific Journal
Year
2024
Authors
Enea, M
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Leite, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Franco, R
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: NanomaterialsImported from Authenticus Search for Journal Publications
Vol. 14
Final page: 1833
ISSN: 2079-4991
Publisher: MDPI
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-017-H7E
Abstract (EN): Gold nanoparticles (AuNPs) are highly attractive for applications in the field of biosensing, particularly for colorimetric nucleic acid detection. Their unique optical properties, which are highly sensitive to changes in their environment, make them ideal candidates for developing simple, rapid, and cost-effective assays. When functionalized with oligonucleotides (Au-nanoprobes), they can undergo aggregation or dispersion in the presence of complementary sequences, leading to distinct color changes that serve as a visual signal for detection. Aggregation-based assays offer significant advantages over other homogeneous assays, such as fluorescence-based methods, namely, label-free protocols, rapid interactions in homogeneous solutions, and detection by the naked eye or using low-cost instruments. Despite promising results, the application of Au-nanoprobe-based colorimetric assays in complex biological matrices faces several challenges. The most significant are related to the colloidal stability and oligonucleotide functionalization of the Au-nanoprobes but also to the mode of detection. The type of functionalization method, type of spacer, the oligo-AuNPs ratio, changes in pH, temperature, or ionic strength influence the Au-nanoprobe colloidal stability and thus the performance of the assay. This review elucidates characteristics of the Au-nanoprobes that are determined for colorimetric gold nanoparticles (AuNPs)-based nucleic acid detection, and how they influence the sensitivity and specificity of the colorimetric assay. These characteristics of the assay are fundamental to developing low-cost, robust biomedical sensors that perform effectively in biological fluids.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 21
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

You Don't Learn That in School: An Updated Practical Guide to Carbon Quantum Dots (2021)
Another Publication in an International Scientific Journal
Sousa, HBA; Martins, CSM; Joao A V Prior
Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells (2021)
Another Publication in an International Scientific Journal
Gomes, HIO; Martins, CSM; Joao A V Prior
Nanopharmaceutics: Part II-Production Scales and Clinically Compliant Production Methods (2020)
Another Publication in an International Scientific Journal
Souto, EB; Silva, GF; Dias Ferreira, J; Zielinska, A; Ventura, F; Durazzo, A; Lucarini, M; Novellino, E; Santini, A
Nanomedicines for the Delivery of Antimicrobial Peptides (AMPs) (2020)
Another Publication in an International Scientific Journal
Teixeira, MC; Carbone, C; Sousa, MC; Espina, M; Garcia, ML; Sanchez Lopez, E; Souto, EB
Nanomaterial-Based Advanced Oxidation/Reduction Processes for the Degradation of PFAS (2023)
Another Publication in an International Scientific Journal
Cardoso, IMF; da Silva, LP; Joaquim C G E Esteves da Silva

See all (86)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-13 at 00:10:04 | Privacy Policy | Personal Data Protection Policy | Whistleblowing