Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Synthesizing 3D Lung CT scans with Generative Adversarial Networks
Publication

Publications

Synthesizing 3D Lung CT scans with Generative Adversarial Networks

Title
Synthesizing 3D Lung CT scans with Generative Adversarial Networks
Type
Article in International Conference Proceedings Book
Year
2022
Authors
Ferreira, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Pereira, T
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Silva, F
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Vilares, AT
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Silva, MC
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Cunha, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00X-G07
Abstract (EN): In the healthcare domain, datasets are often private and lack large amounts of samples, making it difficult to cope with the inherent patient data heterogeneity. As an attempt to mitigate data scarcity, generative models are being used due to their ability to produce new data, using a dataset as a reference. However, synthesis studies often rely on a 2D representation of data, a seriously limited form of information when it comes to lung computed tomography scans where, for example, pathologies like nodules can manifest anywhere in the organ. Here, we develop a 3D Progressive Growing Generative Adversarial Network capable of generating thoracic CT volumes at a resolution of 1283, and analyze the model outputs through a quantitative metric (3D Muli-Scale Structural Similarity) and a Visual Turing Test. Clinical relevance - This paper is a novel application of the 3D PGGAN model to synthesize CT lung scans. This preliminary study focuses on synthesizing the entire volume of the lung rather than just the lung nodules. The synthesized data represent an attempt to mitigate data scarcity which is one of the major limitations to create learning models with good generalization in healthcare.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 4
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

Proceedings of the 3rd IPLeiria's International Health Congress Abstracts (2016)
Article in International Scientific Journal
Tomás, CC; Oliveira, E; Sousa, D; Uba Chupel, M; Furtado, G; Rocha, C; Lopes C; Ferreira, P; Alves, C; Gisin, S; Catarino, E; Carvalho, N; Coucelo, T; Bonfim, L; Silva, C; Franco, D; González, JA; Jardim, HG; Silva, R; Baixinho, CL...(mais 1673 authors)
Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-07 at 00:20:36 | Privacy Policy | Personal Data Protection Policy | Whistleblowing