Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > A novel joining technology for hybrid busbars in electric vehicle batteries
Publication

Publications

A novel joining technology for hybrid busbars in electric vehicle batteries

Title
A novel joining technology for hybrid busbars in electric vehicle batteries
Type
Article in International Scientific Journal
Year
2024
Authors
da Costa, DPM
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Kasaei, MM
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Carbas, RJC
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Marques, EAS
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
da Silva, LFM
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 205
ISSN: 0263-8231
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-017-8GD
Abstract (EN): In this paper, a joining by forming technique is suggested to join aluminium and copper sheets, aimed at potential hybrid busbar manufacturing. The technique, called hole hemming, is performed through the deformation of the aluminium sheet to create a mechanical interlock with the copper sheet, requiring neither heat, welding, nor additional elements/materials. Initially, the feasibility of this joining process is assessed using an analytical model to determine the parameters required for achieving a mechanical interlock while avoiding fractures. The accuracy of the process windows developed by this model is validated through comparisons with experimental results and numerical simulations. In these simulations, the Modified Mohr-Coulomb criterion is employed to predict ductile damage. Furthermore, a new design incorporating branches in the aluminium sheet holes is introduced. This innovation allows for fracture-free joint manufacturing beyond the safe limits predicted by the analytical model, thereby expanding the range of feasible process parameters. Subsequently, the mechanical performance of joints with and without branches is evaluated through destructive shear and cross-tension tests at both room temperature and an elevated temperature of 120 degrees C, simulating the maximum service conditions for busbars. The results demonstrate that hole hemming effectively joins AA6082-T4 and Cu-ETP R240 sheets, validating the proposed designs. Specifically, the hybrid aluminium and copper joints exhibit a maximum shear strength of 4.35 kN and a displacement of 12.11 mm at room temperature. In cross-tension tests, the joints achieve a maximum strength of 1.73 kN and a displacement of 9.86 mm. Although performance slightly diminishes at elevated temperatures, it remains excellent for both destructive test configurations.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 20
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Residual stresses in cold-formed steel members: Review of measurement methods and numerical modelling (2021)
Another Publication in an International Scientific Journal
Díaz, A; Cuesta, II; Alegre, JM; Abilio M P De Jesus; Manso, JM
The effect of curvature in nonlinear supersonic flutter of panels with adjacent bays (2021)
Article in International Scientific Journal
Myrella V. Cabral; Flávio D. Marques; António J. M. Ferreira
The effect of cold forming residual stresses in local fatigue approaches: A numerical perspective (2024)
Article in International Scientific Journal
Souto, C; Parente, M; Correia, J; de Jesus, A
Nonlinear finite element aeroelastic analysis of multibay panels in supersonic flow regime (2017)
Article in International Scientific Journal
Pacheco, DRQ; Marques, FD; Ferreira, AJM
Multi-scale modeling for prediction of residual stress and distortion in Ti-6Al-4V semi-circular thin-walled parts additively manufactured by laser powder bed fusion (LPBF) (2023)
Article in International Scientific Journal
José César de Sá; Manuel Jimenez Abarca; Roya Darabi; Parente, MPL; Ana Reis

See all (23)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-17 at 13:05:12 | Privacy Policy | Personal Data Protection Policy | Whistleblowing