Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Visual Place Recognition for Harbour Infrastructures Inspection
Publication

Publications

Visual Place Recognition for Harbour Infrastructures Inspection

Title
Visual Place Recognition for Harbour Infrastructures Inspection
Type
Article in International Conference Proceedings Book
Year
2023
Authors
Gaspar, AR
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Nunes, A
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Aníbal Castilho Coimbra de Matos
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Conference proceedings International
OCEANS Conference
Limerick, IRELAND, JUN 05-08, 2023
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00Z-5T1
Abstract (EN): The harbour infrastructures have some structures that still need regular inspection. However, the nature of this environment presents a number of challenges when it comes to determining an accurate vehicle position and consequently performing successful image similarity detection. In addition, the underwater environment is highly dynamic, making place recognition harder because the appearance of a place can change over time. In these close-range operations, the visual sensors have a major impact. There are some factors that degrade the quality of the captured images, but image preprocessing steps are increasingly used. Therefore, in this paper, a purely visual similarity detection with enhancement technique is proposed to overcome the inherent perceptual problems in a port scenario. Considering the lack of available data in this context and to facilitate the variation of environmental parameters, a harbour scenario was simulated using the Stonefish simulator. The experiments were performed on some predefined trajectories containing the poor visibility conditions typical of these scenarios. The place recognition approach improves the performance by up to 10% compared to the results obtained with captured images. In general, it provides a good balance in coping with turbidity and light incidence at low computational cost and achieves a performance of about 80%.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 9
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-13 at 02:05:09 | Privacy Policy | Personal Data Protection Policy | Whistleblowing