Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Regeneration of methane splitting catalysts by interfacial hydrogenation
Publication

Publications

Regeneration of methane splitting catalysts by interfacial hydrogenation

Title
Regeneration of methane splitting catalysts by interfacial hydrogenation
Type
Article in International Scientific Journal
Year
2024
Authors
Alves, L
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Pereira, V
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Delgado, S
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Atashi, N
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Lagarteira, T
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Prieto, G
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Adélio Mendes
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 500
ISSN: 1385-8947
Publisher: Elsevier
Other information
Authenticus ID: P-017-AHS
Abstract (EN): Methane splitting, also known as decomposition or pyrolysis, has a unique potential to accelerate the transition from the current carbon-based economy towards the foreseen hydrogen economy. Low-temperature catalytic methane splitting systems are unavailable due to fast catalyst deactivation, caused by solid carbon that encapsulates the catalyst. Catalyst regeneration must be performed to reactivate the catalyst and achieve a long-term operational lifetime. This can be accomplished by cyclically refeeding a portion of the produced hydrogen back to the catalyst, which promotes the hydrogenation of carbon atoms, preferentially at the interface between carbon deposits and catalytic nanoparticles. Interfacial hydrogenation ideally breaks the bonds that connect carbon allotrope products to the metal catalyst, causing the former to detach, and freeing the catalytic metal surface for further reaction. In this work, a proof-of-concept of this technology is provided, showing the full regeneration of a bulk-type Ni catalyst during 22 cycles of methane splitting, at 550 degrees C and 1 bar. Furthermore, a commercial SiO2-Al2O3-supported Ni catalyst has been used to study the regenerability of a highly active nanostructured material by interfacial hydrogenation, using different reactor designs. It has been demonstrated that regeneration is beneficial to improve the stability of Ni-based systems, at the applied working conditions. Nevertheless, tip-grown carbon nanotubes were considered as a cause of permanent deactivation, which could not be solved by refeeding hydrogen into the system.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 11
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Strategies for the intensification of photocatalytic oxidation processes towards air streams decontamination: A review (2020)
Another Publication in an International Scientific Journal
da Costa Filho, BM; Vitor Vilar
Special issue of the 7th European meeting on solar chemistry and photocatalysis: Environmental applications (SPEA7) (2013)
Another Publication in an International Scientific Journal
Adrián M.T. Silva; Alfano, O.M.; Dionysios, D.D.; Li Puma, G.; Mantzavinos, D.
Performance and prospects of different adsorbents for phosphorus uptake and recovery from water (2020)
Another Publication in an International Scientific Journal
Bacelo, H; Ariana Pintor; Santos, SCR; Boaventura, RAR; Cidália Botelho
Oil and grease removal from wastewaters: Sorption treatment as an alternative to state-of-the-art technologies. A critical review (2016)
Another Publication in an International Scientific Journal
Ariana Pintor; Vitor Vilar; Cidália Botelho; Rui Boaventura
Intensification of photocatalytic processes for niche applications in the area of water, wastewater and air treatment Preface (2017)
Another Publication in an International Scientific Journal
Vitor Vilar; Amorim, CC; Puma, GL; Malato, S; Dionysiou, DD

See all (219)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-21 at 05:42:52 | Privacy Policy | Personal Data Protection Policy | Whistleblowing