Abstract (EN):
The purpose of this researching work is to study railway traffic safety on an arch bridge over a V-shaped valley using realistic wind velocity fields, obtained from wind velocity records at the location of the bridge using conditional wind generation techniques. It is intended to check whether the operation rules that reduce the train speed in events of strong winds, are adequate in the case of an arch bridge such as the one studied. A model of non-linear dynamic interaction wind-train-track-bridge has been used. This model is divided into a FEM for the bridge, a multibody model for the train and a nonlinear model to reproduce the wheel-rail contact. The bridge FEM has been validated from bridge acceleration records obtained in events of strong winds. Four trains of three different types (conventional, articulated, and regular) have been studied. The results show that the operating rules that force the train to reduce speed with winds greater than 80 km/h of peak velocity or even to stop the train, are sufficiently conservative for all trains studied since only for peak wind velocity greater than 115 km/h trains studied could circulate unsafely.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
30