Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Transformer-Based Models for Probabilistic Time Series Forecasting with Explanatory Variables
Publication

Publications

Transformer-Based Models for Probabilistic Time Series Forecasting with Explanatory Variables

Title
Transformer-Based Models for Probabilistic Time Series Forecasting with Explanatory Variables
Type
Article in International Scientific Journal
Year
2025
Authors
Caetano, R
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Oliveira, José Manuel
(Author)
FEP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Patrícia Ramos
(Author)
Other
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Journal
Title: MathematicsImported from Authenticus Search for Journal Publications
Vol. 13
Final page: 814
Publisher: MDPI
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-018-4R9
Abstract (EN): Accurate demand forecasting is essential for retail operations as it directly impacts supply chain efficiency, inventory management, and financial performance. However, forecasting retail time series presents significant challenges due to their irregular patterns, hierarchical structures, and strong dependence on external factors such as promotions, pricing strategies, and socio-economic conditions. This study evaluates the effectiveness of Transformer-based architectures, specifically Vanilla Transformer, Informer, Autoformer, ETSformer, NSTransformer, and Reformer, for probabilistic time series forecasting in retail. A key focus is the integration of explanatory variables, such as calendar-related indicators, selling prices, and socio-economic factors, which play a crucial role in capturing demand fluctuations. This study assesses how incorporating these variables enhances forecast accuracy, addressing a research gap in the comprehensive evaluation of explanatory variables within multiple Transformer-based models. Empirical results, based on the M5 dataset, show that incorporating explanatory variables generally improves forecasting performance. Models leveraging these variables achieve up to 12.4% reduction in Normalized Root Mean Squared Error (NRMSE) and 2.9% improvement in Mean Absolute Scaled Error (MASE) compared to models that rely solely on past sales. Furthermore, probabilistic forecasting enhances decision making by quantifying uncertainty, providing more reliable demand predictions for risk management. These findings underscore the effectiveness of Transformer-based models in retail forecasting and emphasize the importance of integrating domain-specific explanatory variables to achieve more accurate, context-aware predictions in dynamic retail environments.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 29
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Survey on Synthetic Data Generation, Evaluation Methods and GANs (2022)
Another Publication in an International Scientific Journal
Figueira, A; Vaz, B
Nonlinear Dynamics (2022)
Another Publication in an International Scientific Journal
António Mendes Lopes; Machado, JAT
Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods (2020)
Another Publication in an International Scientific Journal
Nosratabadi, S; Mosavi, A; Duan, P; Ghamisi, P; Filip, F; Band, SS; Reuter, U; João Gama; Gandomi, AH
Welfare-Balanced International Trade Agreements (2023)
Article in International Scientific Journal
Martins, F; Alberto A. Pinto; Zubelli, JP
Validation of HiG-Flow Software for Simulating Two-Phase Flows with a 3D Geometric Volume of Fluid Algorithm (2023)
Article in International Scientific Journal
Silva, ATGD; Fernandes, C; Organista, J; Souza, L; Castelo, A

See all (46)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-08 at 03:36:10 | Privacy Policy | Personal Data Protection Policy | Whistleblowing