Resumo (PT):
Non-steroidal anti-inflammatory drugs (NSAIDs) treat inflammatory processes by inhibition of cycloxygenase (COX). However, their action against lipid peroxidation can be an alternative pathway to COX inhibition. Since inflammation and lipid peroxidation are cell-surface phenomena, the effects of NSAIDs on membrane models were investigated. Peroxidation was induced by peroxyl radical (ROO•) derived from AAPH and assessed in aqueous or lipid media using fluorescence probes with distinct lipophilic properties: fluorescein; HDAF and DPH-PA. The antioxidant effect of Sulindac and its metabolites was tested and related with their membrane interactions. Drug-membrane interactions included the study of: drug location by fluorescence quenching; drug interaction with membrane surface by zeta-potential measurements; and membrane fluidity changes by steady-state anisotropy. Results revealed that the active NSAID (sulindac sulphide) penetrates into the lipid bilayer and protects the membrane against oxy-radicals. The inactive forms (sulindac and sulindac sulphone) present weaker interactions with the membrane and are better radical scavengers in aqueous media
<br>
<br>
Keywords:
AAPH
fluorescence
Lipid peroxidation
liposome
non-steroidal anti-inflammatory drugs (NSAIDs)
peroxyl radical
<br>
<a target="_blank" href="http://web.ebscohost.com/ehost/detail?vid=3&hid=8&sid=7262047d-a5b5-405f-b485-cb92dc0d0766%40sessionmgr4&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d"> Texto integral</a>
<br>
<br>
Abstract (EN):
Non-steroidal anti-inflammatory drugs (NSAIDs) treat inflammatory processes by inhibition of cycloxygenase (COX). However, their action against lipid peroxidation can be an alternative pathway to COX inhibition. Since inflammation and lipid peroxidation are cell-surface phenomena, the effects of NSAIDs on membrane models were investigated. Peroxidation was induced by peroxyl radical (ROO) derived from AAPH and assessed in aqueous or lipid media using fluorescence probes with distinct lipophilic properties: fluorescein; HDAF and DPH-PA. The antioxidant effect of Sulindac and its metabolites was tested and related with their membrane interactions. Drug-membrane interactions included the study of: drug location by fluorescence quenching; drug interaction with membrane surface by zeta-potential measurements; and membrane fluidity changes by steady-state anisotropy. Results revealed that the active NSAID (sulindac sulphide) penetrates into the lipid bilayer and protects the membrane against oxy-radicals. The inactive forms (sulindac and sulindac sulphone) present weaker interactions with the membrane and are better radical scavengers in aqueous media.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
12