Abstract (EN):
DeepAR is a popular probabilistic time series forecasting algorithm. According to the authors, DeepAR is particularly suitable to build global models using hundreds of related time series. For this reason, it is a common expectation that DeepAR obtains poor results in univariate forecasting [10]. However, there are no empirical studies that clearly support this. Here, we compare the performance of DeepAR with standard forecasting models to assess its performance regarding 1 step-ahead forecasts. We use 100 time series from the M4 competition to compare univariate DeepAR with univariate LSTM and SARIMAX models, both for point and quantile forecasts. Results show that DeepAR obtains good results, which contradicts common perception. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
11