Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Improving Stability of Reduced Inertia Transmission Systems
Publication

Publications

Improving Stability of Reduced Inertia Transmission Systems

Title
Improving Stability of Reduced Inertia Transmission Systems
Type
Article in International Conference Proceedings Book
Year
2024
Authors
C. L. Moreira
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Pereira, MI
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Conference proceedings International
Pages: 443-448
IEEE 22nd Mediterranean Electrotechnical Conference (MELECON)
Porto, PORTUGAL, JUN 25-27, 2024
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-016-W3P
Abstract (EN): The progressive replacement of thermal power plants by converter-interfaced generation, such as wind and solar power plants, reduces the synchronous component available in the system. Additionally, as converter-interfaced renewable energy sources do not directly provide inertia to the power grid, electric power systems are facing a notorious inertia reduction. When facing disturbances affecting the balance between the generation and demand, reduced inertia systems exhibit higher and faster frequency deviations and dynamics. This can result in the disconnection of generation units as well as load shedding, provoking cascading effects that can compel severe power outages. This work examines the impacts of the progressive integration of converter-interfaced renewable energy sources in the frequency stability, considering critical disturbances involving short-circuits in different locations. To simulate the dynamic behaviour of a network containing high shares of renewable energy generation, the IEEE 39-bus system is used while resorting to the PSS/E simulation package. After obtaining a scenario with reduced synchronous generation, the network's stability is assessed in face of key frequency indicators (frequency nadir and Rate of Change of Frequency, RoCoF). Regarding the critical disturbances applied in a low inertia scenario, different control solutions for the mitigation of frequency stability problems are tested and their performance is assessed comparatively. This involves the investigation of the performance of the active power-frequency control in the renewable energy sources, of synchronous condensers, or fast active power-frequency regulation services from stationary energy storage. Moreover, the influence of the location and apparent power of synchronous condensers (SCs) and Battery Energy Storage Systems (BESS) on the frequency indicators is evaluated.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 6
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-09-03 at 12:17:56 | Privacy Policy | Personal Data Protection Policy | Whistleblowing