Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Online Hyphenation of Multimodal Microsolid Phase Extraction Involving Renewable Molecularly Imprinted and Reversed-Phase Sorbents to Liquid Chromatography for Automatic Multiresidue Assays
Publication

Publications

Online Hyphenation of Multimodal Microsolid Phase Extraction Involving Renewable Molecularly Imprinted and Reversed-Phase Sorbents to Liquid Chromatography for Automatic Multiresidue Assays

Title
Online Hyphenation of Multimodal Microsolid Phase Extraction Involving Renewable Molecularly Imprinted and Reversed-Phase Sorbents to Liquid Chromatography for Automatic Multiresidue Assays
Type
Article in International Scientific Journal
Year
2010
Authors
Warunya Boonjob
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Yongliang L Yu
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Manuel Miro
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Marcela A Segundo
(Author)
FFUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Jianhua H Wang
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Victor Cerda
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Title: Analytical ChemistryImported from Authenticus Search for Journal Publications
Vol. 82 No. 7
Pages: 3052-3060
ISSN: 0003-2700
Indexing
Scientific classification
FOS: Natural sciences > Chemical sciences
CORDIS: Health sciences
Other information
Authenticus ID: P-003-7M5
Resumo (PT): Molecular imprinted polymers (MIP) have recently drawn much attention as highly selective solid-phase materials for handling and isolation of organic pollutants in complex matrices. Because of the impaired retention capacity for target species as compared with reversed-phase materials and irreversible sorption of interfering compounds by nonspecific interactions, the implementation of MIP-based solid-phase reactors as permanent components in automatic flow-systems has not received widespread acceptance as of yet. To tackle this limitation, a dynamic microscale solid phase extraction (μSPE) method capitalizing on the principle of programmable flow and bead injection analysis is herein proposed as a front end to liquid chromatography for multiresidue assays. It involves in-line renewable tandem-SPE microcolumns composed of molecularly imprinted polymers and copolymeric N-vinylpyrrolidone/divinylbenzene beads integrated within the flow network for multimodal extraction. Chlorotriazine herbicides (namely, atrazine, simazine, propazine) and principal degradation products thereof (namely, deisopropylatrazine and deethylatrazine) were selected as model analytes. The effect of several parameters, including the dimensions and chemical composition of the sorptive microcolumns, the sample loading flow rate, the type and volume of eluent, the interface with liquid chromatography (LC), and the disposable nature of the column on the analytical performance were investigated in detail. The assembled flow setup features appropriate removal of interfering organic species via solvent switch with toluene, the circumvention of analyte band-broadening in LC by in-line merging of the eluate with a water stream, and the transfer of the overall analyte-containing eluate into the LC. For 10-mL sample percolation, limits of detection (S/N = 3) of 0.02−0.04 ng mL−1, limits of quantification (S/N = 10) of 0.07−0.12 ng mL−1, absolute recovery percentages >79%, precision within 1.4−5.5%, and enrichment factors of 46−49 were obtained for the suite of assayed herbicides. The multimodal μSPE method with renewable beads was applied to the multiresidue determination of the target herbicides in crude soil extracts and untreated environmental waters at concentration levels below those endorsed by the current EU Water Framework Directives following appropriate sample preconcentration and/or cleanup. <br> <br> <a target="_blank" href="http://pubs.acs.org/doi/abs/10.1021/ac100185s"> Texto integral </a> <br> <br>
Abstract (EN): Molecular imprinted polymers (MIP) have recently drawn much attention as highly selective solid-phase materials for handling and isolation of organic pollutants in complex matrices. Because of the impaired retention capacity for target species as compared with reversed-phase materials and irreversible sorption of interfering compounds by nonspecific interactions, the implementation of MIP-based solid-phase reactors as permanent components in automatic flow-systems has not received widespread acceptance as of yet. To tackle this limitation, a dynamic microscale solid phase extraction (mu SPE) method capitalizing on the principle of programmable flow and bead injection analysis is herein proposed as a front end to liquid chromatography for multiresidue assays. It involves in-line renewable tandem-SPE microcolumns composed of molecularly imprinted polymers and copolymeric N-vinylpyrrolidone/divinylbenzene beads integrated within the flow network for multimodal extraction. Chlorotriazine herbicides (namely, atrazine, simazine, propazine) and principal degradation products thereof (namely, deisopropylatrazine and deethylatrazine) were selected as model analytes. The effect of several parameters, including the dimensions and chemical composition of the sorptive microcolumns, the sample loading flow rate, the type and volume of eluent, the interface with liquid chromatography (LC), and the disposable nature of the column on the analytical performance were investigated in detail. The assembled flow setup features appropriate removal of interfering organic species via solvent switch with toluene, the circumvention of analyte band-broadening in LC by in-line merging of the eluate with a water stream, and the transfer of the overall analyte-containing eluate into the LC. For 10-mL sample percolation, limits of detection (S/N = 3) of 0.02-0.04 ng mL(-1), limits of quantification (S/N = 10) of 0.07-0.12 ng mL(-1), absolute recovery percentages >79%, precision within 1.4-5.5%, and enrichment factors of 46-49 were obtained for the suite of assayed herbicides. The multimodal mu SPE method with renewable beads was applied to the multiresidue determination of the target herbicides in crude soil extracts and untreated environmental waters at concentration levels below those endorsed by the current EU Water Framework Directives following appropriate sample preconcentration and/or cleanup.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 9
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same scientific areas

Serine-based surfactants active against antibiotic-resistant bacteria (2018)
Poster in a National Conference
M. Luisa C Vale; Eduardo F Marques; Paula Gomes; Ana Rita Dias; Ricardo Ferraz; Sandra G. Silva; Cristina Prudêncio
Sequential injection analysis using electrochemical detection: A review (2005)
Another Publication in an International Scientific Journal
Perez Olmos, R; Soto, JC; Zarate, N; Araujo, AN; Montenegro, MCBSM
Optical sensors and biosensors based on sol-gel films (2007)
Another Publication in an International Scientific Journal
Paula C A Jeronimo; Alberto N Araujo; Conceicao C B S M Montenegro
Application of sequential injection analysis to pharmaceutical analysis (2006)
Another Publication in an International Scientific Journal
Pimenta, AM; Montenegro, MCBSM; Araujo, AN; Calatayud, JM

See all (159)

Of the same journal

Voltammetric Studies of Topotecan Transfer Across Liquid/Liquid Interfaces and Sensing Applications (2015)
Article in International Scientific Journal
Kim, HR; Carlos M Pereira; Han, HY; Lee, HJ
Unbreakable solid-phase microextraction fibers obtained by sol-gel deposition on titanium wire (2006)
Article in International Scientific Journal
Azenha, MA; Nogueira, PJ; Silva, AF
Subppm Amine Detection via Absorption and Luminescence Turn-On Caused by Ligand Exchange in Metal Organic Frameworks (2019)
Article in International Scientific Journal
Sousaraei, A; Queiros, C; Moscoso, FG; Tania, C; Pedrosa, JM; Silva, AMG; Cunha Silva, L; Cabanillas Gonzalez, J
Recent Advances on Mass Spectrometry Analysis of Nitrated Phospholipids (2016)
Article in International Scientific Journal
Melo, T; Domingues, P; Ferreira, R; Milic, I; Fedorova, M; Santos, SM; Marcela A Segundo; Domingues, MRM

See all (21)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-15 at 22:44:40 | Privacy Policy | Personal Data Protection Policy | Whistleblowing