Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Catalytic peroxidation of winery wastewater contaminants using activated carbon-supported magnetite nanoparticles
Publication

Publications

Catalytic peroxidation of winery wastewater contaminants using activated carbon-supported magnetite nanoparticles

Title
Catalytic peroxidation of winery wastewater contaminants using activated carbon-supported magnetite nanoparticles
Type
Article in International Scientific Journal
Year
2024
Authors
Esteves, BM
(Author)
Other
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Morales-Torres, S
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Maldonado-Hódar, FJ
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Luis Madeira
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 58
ISSN: 2214-7144
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00Z-TWQ
Abstract (EN): In this study, co-precipitation and hydrothermal synthesis methods were employed to prepare two types of magnetite nanoparticles (MNPs). An activated carbon derived from olive stones (OSAC) was used as MNPssupport. The physicochemical properties of the resulting OSAC-MNPs catalysts were determined using various characterization techniques. A more homogeneous distribution of larger and well-defined MNPs was obtained by hydrothermal synthesis, resulting in a more extensive blockage of the microporous structure of the support. Both catalysts exhibited paramagnetic behavior, but with relatively low magnetization due to the small size and low crystallinity of the Fe3O4 nanoparticles obtained. The catalytic peroxidation performance of OSAC-MNPs was studied using tyrosol (TY) as a model compound, but also real samples of winery wastewater (WW) were used in the optimized operational conditions, including pH, temperature, and doses of catalyst and hydrogen peroxide. The MNPs-based catalyst prepared by co-precipitation performed better in the range of experimental conditions tested because of the higher surface concentration of active phase that is easily accessible to the pollutant and was less prone to deactivation during successive reaction runs. The combination of active materials and optimized process enables to remove up to 92 % TPh, 35 % COD, and 26 % TOC, while the high stability of the samples associated to a low Fe-leaching (0.07 mg L-1) permits the reuse of materials in consecutive cycles.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 13
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

4-Nitrobenzaldehyde removal by catalytic ozonation in the presence of CNT (2020)
Article in International Scientific Journal
Santos, ASGG; Carla Orge; O.S.G.P. Soares; Manuel Fernando R Pereira
The role of added oxidising agents in assisting the photocatalytic treatment of olive mill wastewater using a metal-free g-C3N4 optical semiconductor (2024)
Article in International Scientific Journal
Torres-Pinto, A; Fernandes, ART; Claudia G Silva; Faria, JL; Silva, Adrian
Proof-of-concept approach to assess the impact of thermal disinfection on biofilm structure in hot water networks (2023)
Article in International Scientific Journal
L. F. Melo; Ana Alexandra Pereira; Ana Rosa Silva; Diogo Narciso; Martins, FG; Luciana Gomes
Photo-Fenton degradation assisted by in situ generation of hydrogen peroxide using a carbon nitride photocatalyst (2020)
Article in International Scientific Journal
André Torres Pinto; Sampaio, M.J.; Jessica Teixo; Cláudia G. Silva; Joaquim Luís Faria; Adrián M. T. Silva
Optimisation of the degradation of 4-nitrophenol by Fenton's process (2022)
Article in International Scientific Journal
Vanessa N. Lima; Carmen S. D. Rodrigues; Yana B. Brandão; M. Benachour; Luís Madeira

See all (12)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-19 at 02:10:51 | Privacy Policy | Personal Data Protection Policy | Whistleblowing