Abstract (EN):
Ensuring privacy while sharing sensitive data is critical, particularly in fields such as healthcare, and everywhere compliance with data protection regulations is required. Anonymization and pseudonymization techniques are essential for preserving individual privacy but it is challenging to select the most appropriate methods given particular privacy and utility requirements. We conducted a focus group during the EuroPLoP 2024 conference that aimed to obtain feedback on patterns that we documented in this space and on a pattern map we outlined, and to identify patterns related to anonymization or pseudonymization of data that have not yet been documented. Some of the patterns we documented were not known by participants. On the other hand, we found some techniques that are potentially privacy-preserving patterns that have not yet been documented, and framed these techniques according to the category in our pattern map. Although the results suggest that our current patterns address some recurring privacy challenges, further exploration and documentation of the techniques are necessary to capture the full range of privacy-preserving solutions.
Language:
English
Type (Professor's evaluation):
Scientific