Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Estimating Completeness of Consensus Models: Geometrical and Distributional Approaches
Publication

Publications

Estimating Completeness of Consensus Models: Geometrical and Distributional Approaches

Title
Estimating Completeness of Consensus Models: Geometrical and Distributional Approaches
Type
Article in International Conference Proceedings Book
Year
2024
Authors
João Mendes-Moreira
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Carlos Soares
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Conference proceedings International
Pages: 464-478
10th International Conference on Machine Learning, Optimization, and Data Science, LOD 2024
Castiglione della Pescaia, 22 September 2024 through 25 September 2024
Indexing
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-018-84Q
Abstract (EN): In many organizations with a distributed operation, not only is data collection distributed, but models are also developed and deployed separately. Understanding the combined knowledge of all the local models may be important and challenging, especially in the case of a large number of models. The automated development of consensus models, which aggregate multiple models into a single one, involves several challenges, including fidelity (ensuring that aggregation does not penalize the predictive performance severely) and completeness (ensuring that the consensus model covers the same space as the local models). In this paper, we address the latter, proposing two measures for geometrical and distributional completeness. The first quantifies the proportion of the decision space that is covered by a model, while the second takes into account the concentration of the data that is covered by the model. The use of these measures is illustrated in a real-world example of academic management, as well as four publicly available datasets. The results indicate that distributional completeness in the deployed models is consistently higher than geometrical completeness. Although consensus models tend to be geometrically incomplete, distributional completeness reveals that they cover the regions of the decision space with a higher concentration of data. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 14
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

Inmplode: A framework to interpret multiple related rule-based models (2021)
Article in International Scientific Journal
Pedro Strecht; João Mendes Moreira; Carlos Soares
Symbolic Data Analysis to Improve Completeness of Model Combination Methods (2024)
Article in International Conference Proceedings Book
Pedro Strecht; João Mendes-Moreira; Carlos Soares
Merging Decision Trees: A Case Study in Predicting Student Performance (2014)
Article in International Conference Proceedings Book
Pedro Strecht; João Mendes-Moreira; Carlos Soares
Generalizing Knowledge in Decentralized Rule-Based Models (2018)
Article in International Conference Proceedings Book
Pedro Strecht; João Mendes Moreira; Carlos Soares
Exploring the impact of ordering models in merging decision trees: a case study in education (2015)
Article in International Conference Proceedings Book
Pedro Strecht; João Mendes-Moreira; Carlos Soares

See all (9)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-13 at 02:44:12 | Privacy Policy | Personal Data Protection Policy | Whistleblowing