Resumo (PT):
Abstract (EN):
This study explores the preparation of lithium iron phosphate (LFP) electrodes for lithium-ion batteries (LIBs), focusing on electrode loadings, dispersion techniques, and drying methods. Using a three-roll mill for LFP slurry dispersion, good electrochemical properties were achieved with loadings of 5-8 mgcm-2 (0.8-1.2 mAhcm-2 areal capacity). Adding polyvinylidene fluoride (PVDF) during the final milling stage reduced performance due to premature solidification in-between rolls. Vacuum-free drying improved ionic conductivity, stability against lithium metal, and discharge capacity, whereas vacuum-dried samples exhibited higher initial resistance and lower capacity retention. These findings highlight critical parameters for enhancing LFP electrode performance, paving the way for high-performance, and sustainable energy-storage solutions.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
17