Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Spray Quality Assessment on Water-Sensitive Paper Comparing AI and Classical Computer Vision Methods
Publication

Publications

Spray Quality Assessment on Water-Sensitive Paper Comparing AI and Classical Computer Vision Methods

Title
Spray Quality Assessment on Water-Sensitive Paper Comparing AI and Classical Computer Vision Methods
Type
Article in International Conference Proceedings Book
Year
2024
Authors
Simões, I
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Baltazar, AR
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Armando Jorge Sousa
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Indexing
Other information
Authenticus ID: P-017-GGG
Abstract (EN): Over recent decades, precision agriculture has revolutionized farming by optimizing crop yields and reducing resource use through targeted applications. Existing portable spray quality assessors lack precision, especially in detecting overlapping droplets on water-sensitive paper. This proposal aims to develop a smartphone application that uses the integrated camera to assess spray quality. Two approaches were implemented for segmentation and evaluation of both the water-sensitive paper and the individual droplets: classical computer vision techniques and a pre-trained YOLOv8 deep learning model. Due to the labor-intensive nature of annotating real datasets, a synthetic dataset was created for model training through sim-to-real transfer. Results show YOLOv8 achieves commendable metrics and efficient processing times but struggles with low image resolution and small droplet sizes, scoring an average Intersection over Union of 97.76% for water-sensitive spray segmentation and 60.77% for droplet segmentation. Classical computer vision techniques demonstrate high precision but lower recall with a precision of 36.64% for water-sensitive paper and 90.85% for droplets. This study highlights the potential of advanced computer vision and deep learning in enhancing spray quality assessors, emphasizing the need for ongoing refinement to improve precision agriculture tools. © 2024 by SCITEPRESS-Science and Technology Publications, Lda.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 7
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-10-21 at 14:24:17 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book