Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > AIMSM - A Mechanism to Optimize Systems with Multiple AI Models: A Case Study in Computer Vision for Autonomous Mobile Robots
Publication

Publications

AIMSM - A Mechanism to Optimize Systems with Multiple AI Models: A Case Study in Computer Vision for Autonomous Mobile Robots

Title
AIMSM - A Mechanism to Optimize Systems with Multiple AI Models: A Case Study in Computer Vision for Autonomous Mobile Robots
Type
Article in International Conference Proceedings Book
Year
2024
Authors
Ferreira, BG
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Armando Jorge Sousa
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Conference proceedings International
Indexing
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-017-CNF
Abstract (EN): This article proposes the Artificial Intelligence Models Switching Mechanism (AIMSM), a novel approach to optimize system resource utilization by allowing systems to switch AI models during runtime in dynamic environments. Many real-world applications utilize multiple data sources and various AI models for different purposes. In many of those applications, every AI model doesn¿t have to operate all the time. The AIMSM strategically allows the system to activate and deactivate these models, focusing on system resource optimization. The switching of each AI model can be based on any information, such as context or previous results. In the case study of an autonomous mobile robot performing computer vision tasks, the AIMSM helps the system to achieve a significant increment in performance, with a 50% average increase in frames per second (FPS) rate, for this specific case study, assuming that no erroneous switching occurred. Experimental results have demonstrated that the AIMSM can improve system resource utilization efficiency when properly implemented, optimize overall resource consumption, and enhance system performance. The AIMSM presented itself as a better alternative to permanently loading all the models simultaneously, improving the adaptability and functionality of the systems. It is expected that using the AIMSM will yield a performance improvement that is particularly relevant to systems with multiple AI models of a complex nature, where such models do not need to be all continuously executed or systems that will benefit from lower resource usage. Code is available at https://github.com/BrunoGeorgevich/AIMSM. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 11
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-09-07 at 19:55:44 | Privacy Policy | Personal Data Protection Policy | Whistleblowing