Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > P2P flexibility markets models to support the coordination between the transmission system operators and distribution system operators
Publication

Publications

P2P flexibility markets models to support the coordination between the transmission system operators and distribution system operators

Title
P2P flexibility markets models to support the coordination between the transmission system operators and distribution system operators
Type
Article in International Scientific Journal
Year
2023
Authors
Marques, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Soares, T
(Author)
Other
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Morais, H
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 34
ISSN: 2352-4677
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00Y-B6N
Abstract (EN): The increasing integration of Distributed Energy Resources (DER) in the distribution network has brought more importance to Peer-to-Peer (P2P) markets. However, energy traded in P2P markets can lead to voltage and congestion constraints in distribution networks operated by Distribution System Operators (DSOs). At the same time, Transmission System Operators (TSOs) may need to solve system problems, requesting the participation of DERs in frequency regulation services. To ensure competitive participation in P2P markets, as well as to ensure a correct operation of distribution networks and to contribute to mitigate problems at the system level, coordination mechanisms between the P2P market and the System Operators (SOs) are required. This paper introduces a set of mathematical models considering P2P flexibility trading at the distribution system, while assisting the DSO and TSO in solving the congestion, voltage and frequency problems, respectively. The models are assessed on an IEEE 37bus distribution network with high DER penetration. The first and second models are based on product differentiation to avoid violating the lines' thermal limits and the nodes' voltage limits, respectively. The second model also considers reactive power control in order to impact voltage constraints. The third model uses a virtual load, connected to the TSO network (before the power transformer), to model frequency regulation services. The last model proposes the integration of all methods. Results showed that each model was effective in solving its constraint. However, they do not dismiss the use of the peers' flexibility assets to assure an overall feasible techno-economic solution. The use of the methodology proposed in the present paper can significantly facilitate the adoption of full P2P markets as well as the confidence of the system operators in the integration of these markets.& COPY; 2023 Elsevier Ltd. All rights reserved.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 14
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

The role of hydrogen electrolysers in frequency related ancillary services: A case study in the Iberian Peninsula up to 2040 (2023)
Article in International Scientific Journal
Ribeiro, FJ; João Peças Lopes; Fernandes, FS; Soares, FJ; Madureira, AG
Solar irradiance forecasting using a novel hybrid deep ensemble reinforcement learning algorithm (2022)
Article in International Scientific Journal
Jalali, SMJ; Ahmadian, S; Nakisa, B; Khodayar, M; Khosravi, A; Nahavandi, S; Islam, SMS; Shafie khah, M; Catalao, JPS
Sliding mode-based control of an electric vehicle fast charging station in a DC microgrid (2022)
Article in International Scientific Journal
Mohammed, AM; Alalwan, SNH; Tascikaraoglu, A; Catalao, JPS
Short-circuit constrained distribution network reconfiguration considering closed-loop operation (2022)
Article in International Scientific Journal
Macedo, LH; Home Ortiz, JM; Vargas, R; Mantovani, JRS; Romero, R; Catalao, JPS
Scheduling of mobile charging stations with local renewable energy sources (2024)
Article in International Scientific Journal
Aktar, AK; Tascikaraoglu, A; Catalao, JPS

See all (20)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-08-11 at 05:10:04 | Privacy Policy | Personal Data Protection Policy | Whistleblowing