Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Enantiomers separation by simulated moving bed chromatography - Non-instantaneous equilibrium at the solid-fluid interface
Publication

Publications

Enantiomers separation by simulated moving bed chromatography - Non-instantaneous equilibrium at the solid-fluid interface

Title
Enantiomers separation by simulated moving bed chromatography - Non-instantaneous equilibrium at the solid-fluid interface
Type
Article in International Scientific Journal
Year
1999
Authors
Azevedo, DCS
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Pais, LS
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Alírio Rodrigues
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 865 No. 1
Pages: 187-200
ISSN: 0021-9673
Publisher: Elsevier
Indexing
Other information
Authenticus ID: P-001-2HA
Abstract (EN): The simulated moving bed (SMB) technology, first conceived for large bulk-scale separations in the petrochemical industry, has found increasingly new applications in the pharmaceutical industry. Among these, the separation of fine chemicals has been the subject of considerable study and research. This work presents the modeling, simulation and design of the operation of a SMB plant in order to separate a binary chiral mixture. The usual assumption of instantaneous equilibrium at the solid-fluid interface is questioned and a first-order kinetics of adsorption is taken into account. The cases of linear, Langmuir and modified Langmuir equilibria are studied. The equivalent true moving bed (TMB) model was used assuming axial dispersion for the fluid flow and plug flow for the solid-phase flow. Intraparticle diffusion was described by a linear driving force (LDF) approximation. Simulation results indicate that, under certain conditions, equilibrium is not actually reached at the adsorbent surface. This leads to different unit performances, in terms of product purities and recoveries, as compared to those predicted assuming instantaneous equilibrium. Moreover, SMB units may be improperly designed by the usual methods (flow-rate ratio separation regions) if non-equilibrium effects are overlooked.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 14
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Enantiomeric ratios: Why so many notations? (2018)
Another Publication in an International Scientific Journal
M E Tiritan; Carla Fernandes; Maia, AS; Pinto, M; Cass, QB
Chromatographic supports for enantioselective liquid chromatography: Evolution and innovative trends (2022)
Another Publication in an International Scientific Journal
Carla Fernandes; Lima, R; Pinto, MMM; Tiritan M.E.
Ultrathin phenyl-functionalized solid phase microextraction fiber coating developed by sol-gel deposition (2005)
Article in International Scientific Journal
Azenha, M; Malheiro, C; Silva, AF
Turning cork by-products into smart and green materials for solid-phase extraction - gas chromatography tandem mass spectrometry analysis of fungicides in water (2020)
Article in International Scientific Journal
Celeiro, M; Vazquez, L; Sergazina, M; Docampo, S; Dagnac, T; Vitor Vilar; Llompart, M
Synthesis of glycylglycine-imprinted silica microspheres through different water-in-oil emulsion techniques (2013)
Article in International Scientific Journal
Mariana Ornelas; Dianne Loureiro; Maria Joao Araujo; Eduardo Marques; Cristina Dias Cabral; Manuel Azenha; Fernando Silva

See all (137)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-29 at 06:11:20 | Privacy Policy | Personal Data Protection Policy | Whistleblowing