Abstract (EN):
Oil-hydraulic system drives are conventionally performed by constant-speed electric engines, and typically operate with constant displacement pumps as their central transmission element, and oversized pressures are limited by relief valves. On the other hand, in applications where different speeds of approach and work are needed, different flows can be obtained with regenerative circuits, flow control valves, servo pumps or by different pump operating speeds. Consequently, a higher energy consumption is imposed by the relief flow valve. These and other approaches have been a growing focus of study in industry and academia, due to their potential for substantial increases in energy efficiency and reduction of electrical energy consumption and CO2 emissions. This paper presents a study of the potential economic gains associated with the electric drive of mobile or industrial (static) hydraulic systems characterized by variable drive units. With this drive topology, the electrical consumption associated with the engine drive is compensated, increasing energy efficiency over conventional systems, while reducing industrial carbon emissions and pressures on the dead phases of the operating cycle. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
9