Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Lesion-Aware Chest Radiography Abnormality Classification with Object Detection Framework
Publication

Publications

Lesion-Aware Chest Radiography Abnormality Classification with Object Detection Framework

Title
Lesion-Aware Chest Radiography Abnormality Classification with Object Detection Framework
Type
Article in International Conference Proceedings Book
Year
2023
Authors
Pedrosa, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Sousa, P
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Silva, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Ana Maria Mendonça
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Aurélio Campilho
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Conference proceedings International
Pages: 806-813
36th IEEE International Symposium on Computer-Based Medical Systems, CBMS 2023
L¿Aquila, 22 June 2023 through 24 June 2023
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00Z-7AA
Abstract (EN): Chest radiography is one of the most ubiquitous medical imaging modalities. Nevertheless, the interpretation of chest radiography images is time-consuming, complex and subject to observer variability. As such, automated diagnosis systems for pathology detection have been proposed, aiming to reduce the burden on radiologists. The advent of deep learning has fostered the development of solutions for both abnormality detection with promising results. However, these tools suffer from poor explainability as the reasons that led to a decision cannot be easily understood, representing a major hurdle for their adoption in clinical practice. In order to overcome this issue, a method for chest radiography abnormality detection is presented which relies on an object detection framework to detect individual findings and thus separate normal and abnormal CXRs. It is shown that this framework is capable of an excellent performance in abnormality detection (AUC: 0.993), outperforming other state-of-the-art classification methodologies (AUC: 0.976 using the same classes). Furthermore, validation on external datasets shows that the proposed framework has a smaller drop in performance when applied to previously unseen data (21.9% vs 23.4% on average). Several approaches for object detection are compared and it is shown that merging pathology classes to minimize radiologist variability improves the localization of abnormal regions (0.529 vs 0.491 APF when using all pathology classes), resulting in a network which is more explainable and thus more suitable for integration in clinical practice.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 8
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-20 at 13:34:37 | Privacy Policy | Personal Data Protection Policy | Whistleblowing