Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Deep Feature-Based Automated Chest Radiography Compliance Assessment
Publication

Publications

Deep Feature-Based Automated Chest Radiography Compliance Assessment

Title
Deep Feature-Based Automated Chest Radiography Compliance Assessment
Type
Article in International Conference Proceedings Book
Year
2023
Authors
Costa, M
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Pereira, SC
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Pedrosa, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Ana Maria Mendonça
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Aurélio Campilho
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Conference proceedings International
Pages: 64-67
IEEE 7th Portuguese Meeting on Bioengineering (ENBENG)
Porto, PORTUGAL, JUN 22-23, 2023
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00Y-P07
Abstract (EN): Chest radiography is one of the most common imaging exams, but its interpretation is often challenging and timeconsuming, which has motivated the development of automated tools for pathology/abnormality detection. Deep learning models trained on large-scale chest X-ray datasets have shown promising results but are highly dependent on the quality of the data. However, these datasets often contain incorrect metadata and non-compliant or corrupted images. These inconsistencies are ultimately incorporated in the training process, impairing the validity of the results. In this study, a novel approach to detect non-compliant images based on deep features extracted from a patient position classification model and a pre-trained VGG16 model are proposed. This method is applied to CheXpert, a widely used public dataset. From a pool of 100 images, it is shown that the deep feature-based methods based on a patient position classification model are able to retrieve a larger number of non-compliant images (up to 81% of non-compliant images), when compared to the same methods but based on a pretrained VGG16 (up to 73%) and the state of the art uncertainty-based method (50%).
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 4
Documents
We could not find any documents associated to the publication.
Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-10-01 at 04:30:28 | Privacy Policy | Personal Data Protection Policy | Whistleblowing | Electronic Yellow Book