Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Sonic test singularities of granite stone masonries
Publication

Publications

Sonic test singularities of granite stone masonries

Title
Sonic test singularities of granite stone masonries
Type
Article in International Scientific Journal
Year
2023
Authors
Rachel Martini
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Esequiel Mesquita
(Collaborator)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
António Arêde
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Humberto Varum
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 397
ISSN: 0950-0618
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Scientific classification
FOS: Engineering and technology > Civil engineering
CORDIS: Technological sciences > Engineering > Civil engineering > Structural engineering ; Technological sciences > Engineering > Materials engineering
FOS: Engineering and technology > Materials engineering
Other information
Authenticus ID: P-00Y-KF6
Abstract (EN): For the non-destructive characterization of structures composed of granite stone masonry (heterogeneous materials), in this case of double sheet, one of the most suitable test options is the use of sonic tests. Through these sonic tests, it is possible to estimate the propagation velocities of the P, R and S waves. With these velocity values, it is possible to estimate the elastic parameters that characterize the material. Data acquisition requires special attention because during these tests there are factors that may significantly influence the signal, such as the possible recording of two momentary impacts of the hammer, bad coupling of the recording transducers and environmental noise, which can compromise the quality of the signals, and the literature this topic was not suficciently adressed. It is noteworthy that the estimation of the propagation time of waves and their propagation trajectories are not trivial, since it has great complexity in obtaining the value of the wave's arrival time being its automation a non-strait forward and not reliable process that should be carried out by an experienced user, especially for granite masonries. It is also necessary to identify which types of waves are being measured and represented by these signals, whether P, R or S. However, the identification of waves depends on the intrinsic characteristics of each one of them and on the type of test configuration to be performed. Thus, this work aims to present the advances obtained in the use of sonic tests, considering different configurations, in order to assist in the characterization of structures composed of granite stone masonry. In addition, to proposing new sonic data analysis and processing methodologies to improve the accuracy and reliability of the results obtained in this type of non-destructive test. For this, 8 samples of double sheet granite masonry walls were built in a controlled environment and sonic tests (direct, indirect and unconventional configuration) were performed to characterize these traditional masonries. The results of sonic tests are promising and novel, especially considering that the applicability of these tests on masonry walls is a research area that is not yet sufficiently consolidated, in addition to the difficulties inherent in the fact that the materials are not homogeneous and isotropic. The results showed great variations due to the heterogeneity of the panels. The velocity variation from for the first receiver was higher (1584 m/s) than the other receivers because the first trajectory has less interference from the vertical joints along the wave trajectory. For both tests (direct and indirect), a sensitivity study on the variation of these velocities as a function of the djdT ratio was presented to quantify the estimated velocity for these paths. As expected, the higher this relationship, the lower the velocity values, due to interference from wave attenuation in the horizontal joints. The non-conventional sonic tests proposed in this paper for adequate conditions to obtain the S waves by changing the position and orientation of the receivers and in the direction of impacts (with the aid of an 90 degrees angle fixed to the structure) was adequated demonstrated: it is concluded that the waves interpreted as S reached mean velocity of 1500 m/s, without joint interference. To corroborate the results obtained by the sonic tests, ultrasonic tests were also carried out. The tests confirmed the wave propagation velocity values in the crossblock around 3700 m/s, and with the presence of a joint in the trajectory, the velocities are around 1000 m/ s.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 15
Documents
We could not find any documents associated to the publication with allowed access.
Related Publications

Of the same journal

The influence of the thickness of the walls and their properties on the treatment of rising damp in historic buildings (2010)
Another Publication in an International Scientific Journal
Torres, I; Vasco Peixoto De Freitas
Study of strengthening solutions for glued-laminated wood beams of maritime pine wood (2009)
Another Publication in an International Scientific Journal
Alfredo S Ribeiro; Abilio M P de Jesus; Antonio M Lima; Jose L C Lousada
Physical characterization and compression tests of one leaf stone masonry walls (2012)
Another Publication in an International Scientific Journal
Almeida, C; Paulo Guedes, JP; Arede, A; Costa, CQ; Costa, A
Out-of-plane behavior of masonry infilled RC frames based on the experimental tests available: A systematic review (2018)
Another Publication in an International Scientific Journal
Furtado, A; Rodrigues, H; António Arêde; Humberto Varum
Mortar with wood waste ash: Mechanical strength carbonation resistance and ASR expansion (2013)
Another Publication in an International Scientific Journal
Telma Ramos; Ana Mafalda Matos; Joana Sousa Coutinho

See all (112)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2025-07-06 at 14:40:23 | Acceptable Use Policy | Data Protection Policy | Complaint Portal