Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Random Linear Network Coding for Time Division Duplexing: Queueing Analysis
Publication

Publications

Random Linear Network Coding for Time Division Duplexing: Queueing Analysis

Title
Random Linear Network Coding for Time Division Duplexing: Queueing Analysis
Type
Article in International Conference Proceedings Book
Year
2009
Authors
Daniel E. Lucani
(Author)
FEUP
Muriel Médard
(Author)
FEUP
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Milica Stojanovic
(Author)
FEUP
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Conference proceedings International
Pages: 1423-1427
IEEE International Symposium on Information Theory, 2009. ISIT 2009.
Seoul, Korea, June 28 to July 3, 2009
Scientific classification
FOS: Engineering and technology > Electrical engineering, Electronic engineering, Information engineering
CORDIS: Technological sciences > Engineering > Communication engineering > Telecommunications engineering
Other information
Resumo (PT): We study the performance of random linear network coding for time division duplexing channels with Poisson arrivals. We model the system as a bulk-service queue with variable bulk size. A full characterization for random linear network coding is provided for time division duplexing channels by means of the moment generating function. We present numerical results for the mean number of packets in the queue and consider the effect of the range of allowable bulk sizes. We show that there exists an optimal choice of this range that minimizes the mean number of data packets in the queue.
Abstract (EN): We study the performance of random linear network coding for time division duplexing channels with Poisson arrivals. We model the system as a bulk-service queue with variable bulk size. A full characterization for random linear network coding is provided for time division duplexing channels by means of the moment generating function. We present numerical results for the mean number of packets in the queue and consider the effect of the range of allowable bulk sizes. We show that there exists an optimal choice of this range that minimizes the mean number of data packets in the queue.
Language: English
Type (Professor's evaluation): Scientific
Contact: Daniel E. Lucani (dlucani@fe.up.pt)
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same authors

Underwater Acoustic Networks: Channel Models and Network Coding based Lower Bound to Transmission Power for Multicast (2008)
Article in International Scientific Journal
Daniel E. Lucani; Muriel Médard; Milica Stojanovic
On Coding for Delay - Network Coding for Time Division Duplexing (2012)
Article in International Scientific Journal
Daniel E. Lucani; Muriel Médard; Milica Stojanovic
Capacity Scaling Laws for Underwater Networks (2012)
Article in International Scientific Journal
Daniel E. Lucani; Muriel Médard; Milica Stojanovic
Random Linear Network Coding for Time Division Duplexing: When To Stop Talking And Start Listening (2009)
Article in International Conference Proceedings Book
Daniel E. Lucani; Milica Stojanovic; Muriel Médard
Random Linear Network Coding for Time Division Duplexing: Energy Analysis (2009)
Article in International Conference Proceedings Book
Daniel E. Lucani; Milica Stojanovic; Muriel Médard

See all (12)

Of the same scientific areas

Teoria vectorial do sinal (1989)
Book
Francisco Correia Velez Grilo; António Manuel E. S. Casimiro; João António Correia Lopes
Telecomunicações e incapacidade (1994)
Book
Stephen Tetzchner; Diamantino Rui da Silva Freitas; Comunidades Europeias. Comissão. Direcção-Geral das

See all (70)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-09 at 21:54:54 | Privacy Policy | Personal Data Protection Policy | Whistleblowing