Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Identifying Weak Adhesion in Single-Lap Joints Using Lamb Wave Data and Artificial Intelligence Algorithms
Publication

Publications

Identifying Weak Adhesion in Single-Lap Joints Using Lamb Wave Data and Artificial Intelligence Algorithms

Title
Identifying Weak Adhesion in Single-Lap Joints Using Lamb Wave Data and Artificial Intelligence Algorithms
Type
Article in International Scientific Journal
Year
2023
Authors
Ramalho, GMF
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
António Mendes Lopes
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Ricardo Carbas
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
da Silva, LFM
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Title: Applied SciencesImported from Authenticus Search for Journal Publications
Vol. 13
Final page: 2642
Publisher: MDPI
Other information
Authenticus ID: P-00X-XSV
Abstract (EN): In the last few years, the application of adhesive joints has grown significantly. Adhesive joints are often affected by a specific type of defect known as weak adhesion, which can only be effectively detected through destructive tests. In this paper, we propose nondestructive testing techniques to detect weak adhesion. These are based on Lamb wave (LW) data and artificial intelligence algorithms. A dataset consisting of simulated LW time series extracted from single-lap joints (SLJs) subjected to multiple levels of weak adhesion was generated. The raw time series were pre-processed to avoid numerical saturation and to remove outliers. The processed data were then used as the input to different artificial intelligence algorithms, namely feedforward neural networks (FNNs), long short-term memory (LSTM) networks, gated recurrent unit (GRU) networks, and convolutional neural networks (CNNs), for their training and testing. The results showed that all algorithms were capable of detecting up to 20 different levels of weak adhesion in SLJs, with an overall accuracy between 97% and 99%. Regarding the training time, the FNN emerged as the most-appropriate. On the other hand, the GRU showed overall faster learning, being able to converge in less than 50 epochs. Therefore, the FNN and GRU presented the best accuracy and had relatively acceptable convergence times, making them the most-suitable choices. The proposed approach constitutes a new framework allowing the creation of standardized data and optimal algorithm selection for further work on nondestructive damage detection and localization in adhesive joints.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 19
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Wound Dressing Materials: Bridging Material Science and Clinical Practice (2025)
Another Publication in an International Scientific Journal
Ferraz, MP
Viscoelasticity: Mathematical Modelling, Numerical Simulations, and Experimental Work (2023)
Another Publication in an International Scientific Journal
Ferras, LL; Afonso, AM
Thermal conductivity of nanofluids: A review on prediction models, controversies and challenges (2021)
Another Publication in an International Scientific Journal
Gonçalves, I; Souza, R; Coutinho, G; Miranda, JM; Moita, A; Pereira, JE; Moreira, A; Lima, R
Theories and Analysis of Functionally Graded Beams (2021)
Another Publication in an International Scientific Journal
J. N. Reddy; Eugenio Ruocco; Jose A. Loya; Ana M. A. Neves
The Yeast-Based Probiotic Encapsulation Scenario: A Systematic Review and Meta-Analysis (2024)
Another Publication in an International Scientific Journal
Oliveira, WD; de Brito, LP; de Souza, EAG; Lopes, IL; de Oliveira, CA; Calaça, PRD; M B P P Oliveira; Costa, ED

See all (285)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-15 at 23:31:24 | Privacy Policy | Personal Data Protection Policy | Whistleblowing