Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Lightweight multi-scale classification of chest radiographs via size-specific batch normalization
Publication

Publications

Lightweight multi-scale classification of chest radiographs via size-specific batch normalization

Title
Lightweight multi-scale classification of chest radiographs via size-specific batch normalization
Type
Article in International Scientific Journal
Year
2023
Authors
Pereira, SC
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Rocha, J
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Aurélio Campilho
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Sousa, P
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Ana Maria Mendonça
(Author)
FEUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page View ORCID page
Journal
Vol. 236
ISSN: 0169-2607
Publisher: Elsevier
Indexing
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citations
Publicação em Scopus Scopus - 0 Citations
Other information
Authenticus ID: P-00Y-8QY
Abstract (EN): Background and Objective: Convolutional neural networks are widely used to detect radiological findings in chest radiographs. Standard architectures are optimized for images of relatively small size (for exam-ple, 224 x 224 pixels), which suffices for most application domains. However, in medical imaging, larger inputs are often necessary to analyze disease patterns. A single scan can display multiple types of radi-ological findings varying greatly in size, and most models do not explicitly account for this. For a given network, whose layers have fixed-size receptive fields, smaller input images result in coarser features, which better characterize larger objects in an image. In contrast, larger inputs result in finer grained features, beneficial for the analysis of smaller objects. By compromising to a single resolution, existing frameworks fail to acknowledge that the ideal input size will not necessarily be the same for classifying every pathology of a scan. The goal of our work is to address this shortcoming by proposing a lightweight framework for multi-scale classification of chest radiographs, where finer and coarser features are com-bined in a parameter-efficient fashion. Methods: We experiment on CheXpert, a large chest X-ray database. A lightweight multi-resolution (224 x 224, 4 48 x 4 48 and 896 x 896 pixels) network is developed based on a Densenet-121 model where batch normalization layers are replaced with the proposed size-specific batch normalization. Each input size undergoes batch normalization with dedicated scale and shift parameters, while the remaining parameters are shared across sizes. Additional external validation of the proposed approach is performed on the VinDr-CXR data set. Results: The proposed approach (AUC 83 . 27 +/- 0 . 17 , 7.1M parameters) outperforms standard single-scale models (AUC 81 . 76 +/- 0 . 18 , 82 . 62 +/- 0 . 11 and 82 . 39 +/- 0 . 13 for input sizes 224 x 224, 4 48 x 4 48 and 896 x 896, respectively, 6.9M parameters). It also achieves a performance similar to an ensemble of one individual model per scale (AUC 83 . 27 +/- 0 . 11 , 20.9M parameters), while relying on significantly fewer parameters. The model leverages features of different granularities, resulting in a more accurate classifi-cation of all findings, regardless of their size, highlighting the advantages of this approach. Conclusions: Different chest X-ray findings are better classified at different scales. Our study shows that multi-scale features can be obtained with nearly no additional parameters, boosting performance. (c) 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 9
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Skin Lesion Computational Diagnosis of Dermoscopic Images: Ensemble Models based on Input Feature Manipulation (2017)
Article in International Scientific Journal
Roberta B. Oliveira; Aledir S. Pereira; João Manuel R. S. Tavares
Segmentation of ultrasound images of the carotid using RANSAC and cubic splines (2011)
Article in International Scientific Journal
Rui Rocha; Aurélio Campilho; Jorge A. Silva; Elsa Azevedo; Rosa Santos
Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation (2022)
Article in International Scientific Journal
Gracka, M; Lima, R; Miranda, JM; Student, S; Melka, B; Ostrowski, Z
Positive state observer for the automatic control of the depth of anesthesia-Clinical results (2019)
Article in International Scientific Journal
Filipa N. Nogueira; T. Mendonça; Maria Paula Rocha

See all (34)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-13 at 02:13:51 | Privacy Policy | Personal Data Protection Policy | Whistleblowing