Abstract (EN):
In this paper we compare the robustness of several types of stylistic markers to help discriminate authorship at sentence level. We train a SVM-based classifier using each set of features separately and perform sentence-level authorship analysis over corpus of editorials published in a Portuguese quality newspaper. Results show that features based on POS information, punctuation and word / sentence length contribute to a more robust sentence-level authorship analysis.
Language:
English
Type (Professor's evaluation):
Scientific
No. of pages:
4