Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification in Vegetable Crops
Publication

Publications

Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification in Vegetable Crops

Title
Computer Vision and Deep Learning as Tools for Leveraging Dynamic Phenological Classification in Vegetable Crops
Type
Article in International Scientific Journal
Year
2023
Authors
Rodrigues, L
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
da Silva, DQ
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. View Authenticus page Without ORCID
Mario Cunha
(Author)
FCUP
View Personal Page You do not have permissions to view the institutional email. Search for Participant Publications View Authenticus page Without ORCID
Journal
The Journal is awaiting validation by the Administrative Services.
Title: AGRONOMY-BASELImported from Authenticus Search for Journal Publications
Vol. 13
Final page: 463
ISSN: 2073-4395
Other information
Authenticus ID: P-00X-W25
Abstract (EN): The efficiency of agricultural practices depends on the timing of their execution. Environmental conditions, such as rainfall, and crop-related traits, such as plant phenology, determine the success of practices such as irrigation. Moreover, plant phenology, the seasonal timing of biological events (e.g., cotyledon emergence), is strongly influenced by genetic, environmental, and management conditions. Therefore, assessing the timing the of crops' phenological events and their spatiotemporal variability can improve decision making, allowing the thorough planning and timely execution of agricultural operations. Conventional techniques for crop phenology monitoring, such as field observations, can be prone to error, labour-intensive, and inefficient, particularly for crops with rapid growth and not very defined phenophases, such as vegetable crops. Thus, developing an accurate phenology monitoring system for vegetable crops is an important step towards sustainable practices. This paper evaluates the ability of computer vision (CV) techniques coupled with deep learning (DL) (CV_DL) as tools for the dynamic phenological classification of multiple vegetable crops at the subfield level, i.e., within the plot. Three DL models from the Single Shot Multibox Detector (SSD) architecture (SSD Inception v2, SSD MobileNet v2, and SSD ResNet 50) and one from You Only Look Once (YOLO) architecture (YOLO v4) were benchmarked through a custom dataset containing images of eight vegetable crops between emergence and harvest. The proposed benchmark includes the individual pairing of each model with the images of each crop. On average, YOLO v4 performed better than the SSD models, reaching an F1-Score of 85.5%, a mean average precision of 79.9%, and a balanced accuracy of 87.0%. In addition, YOLO v4 was tested with all available data approaching a real mixed cropping system. Hence, the same model can classify multiple vegetable crops across the growing season, allowing the accurate mapping of phenological dynamics. This study is the first to evaluate the potential of CV_DL for vegetable crops' phenological research, a pivotal step towards automating decision support systems for precision horticulture.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 19
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Smartphone Applications Targeting Precision Agriculture Practices-A Systematic Review (2020)
Another Publication in an International Scientific Journal
Mendes, J; Pinho, TM; Filipe Neves Santos; Sousa, JJ; Peres, E; Boaventura Cunha, J; Mario Cunha; Morais, R
Legume Biofortification and the Role of Plant Growth-Promoting Bacteria in a Sustainable Agricultural Era (2020)
Another Publication in an International Scientific Journal
Roriz, M; Carvalho, SMP; Castro, PML; Vasconcelos, MW
Temperature-Based Grapevine Ripeness Modeling for cv. Touriga Nacional and Encruzado in the Dao Wine Region, Portugal (2021)
Article in International Scientific Journal
Rodrigues, P; Pedroso, V; Goncalves, F; Reis, S; Santos, JA
QVigourMap: A GIS Open Source Application for the Creation of Canopy Vigour Maps (2021)
Article in International Scientific Journal
Lia Duarte; Ana Teodoro; Sousa, JJ; Padua, L
Potential Non-Invasive Technique for Accessing Plant Water Contents Using a Radar System (2021)
Article in International Scientific Journal
Luís Carlos Santos; Filipe Neves dos Santos; Raul Morais; Cândido Duarte

See all (14)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-28 at 22:05:40 | Privacy Policy | Personal Data Protection Policy | Whistleblowing