Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > The critical role of Asp206 stabilizing residues on the catalytic mechanism of the Ideonella sakaiensis PETase
Publication

Publications

The critical role of Asp206 stabilizing residues on the catalytic mechanism of the Ideonella sakaiensis PETase

Title
The critical role of Asp206 stabilizing residues on the catalytic mechanism of the Ideonella sakaiensis PETase
Type
Article in International Scientific Journal
Year
2022
Authors
Magalhaes, RP
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Fernandes, HS
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Pages: 3474-3483
ISSN: 2044-4753
Other information
Authenticus ID: P-00W-F99
Abstract (EN): Plastic accumulation is one of the main environmental issues of our time. In 2016, two enzymes capable of degrading polyethylene terephthalate (PET), one of the most common plastic polymers, were discovered. PETase and MHETase from Ideonella sakaiensis (IsPETase and IsMHETase, respectively) work sequentially to degrade PET to its constituent monomers. PETase catalyzes the cleavage of PET repetitive units ((mono-(2-hydroxyethyl)terephthalic acid (MHET)), whereas MHETase hydrolyses MHET into terephthalic acid (TPA) and ethylene glycol (EG). In this work, the catalytic mechanism of IsPETase was studied by QM/MM. The reaction was found to progress in four distinct steps, divided into two major events: formation of the first transition intermediate and hydrolysis of the adduct. The transition state and respective reactant and product of each step were fully characterized and described. The rate-limiting step was found to be step 3, with an activation barrier of 12.5 kcal mol(-1). Furthermore, in this study, we have shown the critical role of a triad of residues composed by Ser207, Ile208, and Ala209 in stabilizing the catalytic Asp206 residue. This finding confirms the importance of using a larger QM region since our results disclose some important differences when compared with previous computational studies of the same mechanism. These results provide valuable insights into the catalytic mechanism of IsPETase that can contribute to the rational development of more efficient engineered enzymes.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 10
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

PLP-dependent enzymes as important biocatalysts for the pharmaceutical, chemical and food industries: a structural and mechanistic perspective (2019)
Another Publication in an International Scientific Journal
Rocha, JF; Pina, AF; Sergio Filipe Sousa; Nuno M F S A Cerqueira
Graphene-based materials for catalysis (2012)
Another Publication in an International Scientific Journal
B.F. Machado; Serp, P
[VO(acac)(2)] hybrid catalyst: from complex immobilization onto silica nanoparticles to catalytic application in the epoxidation of geraniol (2011)
Article in International Scientific Journal
Clara Pereira; Jose F Silva; Andre M Pereira; Joao P Araujo; Ginesa Blanco; Jose M Pintado; Cristina Freire
The role of surface properties in CO2 methanation over carbon-supported Ni catalysts and their promotion by Fe (2020)
Article in International Scientific Journal
Goncalves, LPL; Sousa, JPS; O.S.G.P. Soares; Bondarchuk, O; Lebedev, OI; Kolen'ko, YV; Manuel Fernando R Pereira
The role of mechanochemical treatment of carbon nanotubes in promoting glycerol etherification (2024)
Article in International Scientific Journal
Ptaszynska, K; Eblagon, K.M.; Malaika, A; Figueiredo, JL; Kozlowski, M

See all (17)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z  I Guest Book
Page created on: 2025-07-06 at 10:12:54 | Acceptable Use Policy | Data Protection Policy | Complaint Portal