Go to:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Start > Publications > View > Nucleation, Coalescence, and Thin-Film Growth of Triflate-Based Ionic Liquids on ITO, Ag, and Au Surfaces
Publication

Publications

Nucleation, Coalescence, and Thin-Film Growth of Triflate-Based Ionic Liquids on ITO, Ag, and Au Surfaces

Title
Nucleation, Coalescence, and Thin-Film Growth of Triflate-Based Ionic Liquids on ITO, Ag, and Au Surfaces
Type
Article in International Scientific Journal
Year
2022
Authors
Teixeira, MSM
(Author)
Other
The person does not belong to the institution. The person does not belong to the institution. The person does not belong to the institution. Without AUTHENTICUS Without ORCID
Journal
Vol. 6
Final page: 46
ISSN: 0927-7765
Publisher: Elsevier
Other information
Authenticus ID: P-00X-7WT
Abstract (EN): This study investigates the nucleation and growth of micro-/nanodroplets of triflate-based ionic liquids (ILs) fabricated by vapor deposition on different surfaces: indium tin oxide (ITO); silver (Ag); gold (Au). The ILs studied are constituted by the alkylimidazolium cation and the triflate anion-[CnC1 im][OTF] series. One of the key issues that determine the potential applications of ILs is the wettability of surfaces. Herein, the wetting behavior was evaluated by changing the cation alkyl chain length (C-2 to C-10). A reproducible control of the deposition rate was conducted employing Knudsen cells, and the thin-film morphology was evaluated by high-resolution scanning electron microscopy (SEM). The study reported here for the [C(n)C(1)im][OTF] series agrees with recent data for the [C(n)C(1)im][NTf2] congeners, highlighting the higher wettability of the solid substrates to long-chain alkylimidazolium cations. Compared to [NTf2], the [OTF] series evidenced an even more pronounced wetting ability on Au and coalescence processes of droplets highly intense on ITO. Higher homogeneity and film cohesion were found for cationic groups associated with larger alkyl side chains. An island growth was observed on both Ag and ITO substrates independently of the cation alkyl chain length. The Ag surface promoted the formation of smaller-size droplets. A quantitative analysis of the number of microdroplets formed on Ag and ITO revealed a trend shift around [C(6)C(1)im][OTF], emphasizing the effect of the nanostructuration intensification due to the formation of nonpolar continuous domains.
Language: English
Type (Professor's evaluation): Scientific
No. of pages: 16
Documents
We could not find any documents associated to the publication.
Related Publications

Of the same journal

Nanotechnological carriers for cancer chemotherapy: The state of the art (2015)
Another Publication in an International Scientific Journal
Estanqueiro, M; Maria Helena Amaral; Conceicao, J; Sousa Lobo, JMS
3D-printed biosurfactant-chitosan antibacterial coating for the prevention of silicone-based associated infections (2023)
Article in International Scientific Journal
Narciso F; Cardoso S; Monge N; Lourenço M; Victor Martin; Duarte N; Catarina Santos ; Gomes PS; Ana Bettencourt
UV-C driven reduction of nanographene oxide opens path for new applications in phototherapy (2024)
Article in International Scientific Journal
Silva, FALS; Timochenco, L; Costa Almeida, R; Fernandes, JR; Santos, SG; Magalhães, F. D.; Artur Pinto
Topical co-delivery of methotrexate and etanercept using lipid nanoparticles: A targeted approach for psoriasis management (2017)
Article in International Scientific Journal
Ferreira, M; Barreiros, L; Marcela A Segundo; Torres, T; Selores, M; Costa Lima, SAC; Salette Reis
The potential advantages of using a poly(HPMA) brush in urinary catheters: effects on biofilm cells and architecture (2020)
Article in International Scientific Journal
Patrícia Alves; Luciana Gomes; Mariia Vorobii; César Rodriguez-Emmenegger; Filipe Mergulhão

See all (77)

Recommend this page Top
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Terms and Conditions  I Acessibility  I Index A-Z
Page created on: 2025-07-14 at 15:03:30 | Privacy Policy | Personal Data Protection Policy | Whistleblowing